What's new
  • As of today ICMag has his own Discord server. In this Discord server you can chat, talk with eachother, listen to music, share stories and pictures...and much more. Join now and let's grow together! Join ICMag Discord here! More details in this thread here: here.

... sig ...

acespicoli

Well-known member
Plankton
Part of a series on
Phytoplankton
show
Trophic mode
show
By size
hide
By taxonomy
show
By habitat
show
Other types
show
Blooms
show
Related topics
  • Spine variations in radiolarians as discovered by HMS Challenger in the 19th century and drawn by Ernst Haeckel
  • Cromyatractus tetracelyphus with 2 spines
    Cromyatractus tetracelyphus with 2 spines
  • Circopus sexfurcus with 6 spines
    Circopus sexfurcus with 6 spines
  • Circopurus octahedrus with 6 spines and 8 faces
    Circopurus octahedrus with 6 spines and 8 faces
  • Circogonia icosahedra with 12 spines and 20 faces
    Circogonia icosahedra with 12 spines and 20 faces
  • Circorrhegma dodecahedra with 20 (incompletely drawn) spines and 12 faces
    Circorrhegma dodecahedra with 20 (incompletely drawn) spines and 12 faces
  • Cannocapsa stethoscopium with 20 spines
    Cannocapsa stethoscopium with 20 spines

The gallery shows images of the radiolarians as extracted from drawings made by the German zoologist and polymath Ernst Haeckel in 1887.

 

acespicoli

Well-known member
1730946619239.png

The green algae (sg.: green alga) are a group of chlorophyll-containing autotrophic eukaryotes consisting of the phylum Prasinodermophyta and its unnamed sister group that contains the Chlorophyta and Charophyta/Streptophyta. The land plants (Embryophytes) have emerged deep in the Charophyte alga as a sister of the Zygnematophyceae.[1][2][3]
 

acespicoli

Well-known member
Thanks for sharing @Dime
Very well put together document
Spent many hours deep diving all those aspects addressed there.

Alot of information very condensed and neatly presented, been striving lately to keep all my own observations so neatly organized

Find that a skim thru quick read is nice for the overview, how do we apply all those principles presented there in our own work

Is it the end or just the beginning of greater things, the hardest thing to fathom is the plants wild diversity.

Also at this point, I'm thinking have we lost plants we can never get back :thinking:



What may we find in the future novelties
Is cannabis still evolving 🤔

Well the answers confirm our hypothesis Alot of good education on the subject to be gleaned from study. but, its the questions that drive us further.
Looking into old herbarium specimens there's plant morphology I've never seen in bagseed. Is it still collectible 🤷‍♂️ Hopefully
Would love to travel during harvest season and study leaf and seed morphology ;)
Best >>>:huggg:

🚋
 
Last edited:

acespicoli

Well-known member
However, de Meijer et al. found that the THCA/CBDA ratio in medical marijuana F1 plants followed a Mendelian expectation of 1:2:1 [72].

 
Last edited:

acespicoli

Well-known member
awesome thread thanks
Welcome :huggg:

The Functional Significance of Black-Pigmented Leaves: Photosynthesis, Photoprotection and Productivity in Ophiopogon planiscapus ‘Nigrescens’​

Jean-Hugues B Hatier 1,¤, Michael J Clearwater 2, Kevin S Gould 3,*
Editor: Rajagopal Subramanyam4
  • Author information
  • Article notes
  • Copyright and License information

PMCID: PMC3691134 PMID: 23826347

Abstract​

Black pigmented leaves are common among horticultural cultivars, yet are extremely rare across natural plant populations. We hypothesised that black pigmentation would disadvantage a plant by reducing photosynthesis and therefore shoot productivity, but that this trait might also confer protective benefits by shielding chloroplasts against photo-oxidative stress. CO2 assimilation, chlorophyll a fluorescence, shoot biomass, and pigment concentrations were compared for near isogenic green- and black-leafed Ophiopogon planiscapus ‘Nigrescens’. The black leaves had lower maximum CO2 assimilation rates, higher light saturation points and higher quantum efficiencies of photosystem II (PSII) than green leaves. Under saturating light, PSII photochemistry was inactivated less and recovered more completely in the black leaves. In full sunlight, green plants branched more abundantly and accumulated shoot biomass quicker than the black plants; in the shade, productivities of the two morphs were comparable. The data indicate a light-screening, photoprotective role of foliar anthocyanins. However, limitations to photosynthetic carbon assimilation are relatively small, insufficient to explain the natural scarcity of black-leafed plants.
 
Top