Sticky sweetheart I know what polarity is...I want to know from whence it came...
is it a result of temperature gradient? if so, where did the difference come from?
religion would have it come from myth. science should know by now what causes electricity, yet it is nowhere explained.
where did hot and cold come from?
Spin projection quantum number and multiplicity
In classical mechanics, the angular momentum of a particle possesses not only a magnitude (how fast the body is rotating), but also a direction (either up or down on the axis of rotation of the particle). Quantum mechanical spin also contains information about direction, but in a more subtle form. Quantum mechanics states that the component of angular momentum measured along any direction can only take on the values [14]
S_i = \hbar s_i, \quad s_i \in \{ - s, -(s-1), \dots, s-1, s \} \,\!
where Si is the spin component along the i-axis (either x, y, or z), si is the spin projection quantum number along the i-axis, and s is the principal spin quantum number (discussed in the previous section). Conventionally the direction chosen is the z-axis:
S_z = \hbar s_z, \quad s_z \in \{ - s, -(s-1), \dots, s - 1, s \} \,\!
where Sz is the spin component along the z-axis, sz is the spin projection quantum number along the z-axis.
One can see that there are 2s+1 possible values of sz. The number "2s + 1" is the multiplicity of the spin system. For example, there are only two possible values for a spin-1/2 particle: sz = +1/2 and sz = −1/2. These correspond to quantum states in which the spin is pointing in the +z or −z directions respectively, and are often referred to as "spin up" and "spin down". For a spin-3/2 particle, like a delta baryon, the possible values are +3/2, +1/2, −1/2, −3/2.
Vector
A single point in space can spin continuously without becoming tangled. Notice that after a 360 degree rotation, the spiral flips between clockwise and counterclockwise orientations. It returns to its original configuration after spinning a full 720 degrees.
For a given quantum state, one could think of a spin vector \lang S \rang whose components are the expectation values of the spin components along each axis, i.e., \lang S \rang = [\lang S_x \rang, \lang S_y \rang, \lang S_z \rang]. This vector then would describe the "direction" in which the spin is pointing, corresponding to the classical concept of the axis of rotation. It turns out that the spin vector is not very useful in actual quantum mechanical calculations, because it cannot be measured directly: sx, sy and sz cannot possess simultaneous definite values, because of a quantum uncertainty relation between them. However, for statistically large collections of particles that have been placed in the same pure quantum state, such as through the use of a Stern–Gerlach apparatus, the spin vector does have a well-defined experimental meaning: It specifies the direction in ordinary space in which a subsequent detector must be oriented in order to achieve the maximum possible probability (100%) of detecting every particle in the collection. For spin-1/2 particles, this maximum probability drops off smoothly as the angle between the spin vector and the detector increases, until at an angle of 180 degrees—that is, for detectors oriented in the opposite direction to the spin vector—the expectation of detecting particles from the collection reaches a minimum of 0%.
As a qualitative concept, the spin vector is often handy because it is easy to picture classically. For instance, quantum mechanical spin can exhibit phenomena analogous to classical gyroscopic effects. For example, one can exert a kind of "torque" on an electron by putting it in a magnetic field (the field acts upon the electron's intrinsic magnetic dipole moment—see the following section). The result is that the spin vector undergoes precession, just like a classical gyroscope. This phenomenon is known as electron spin resonance (ESR). The equivalent behaviour of protons in atomic nuclei is used in nuclear magnetic resonance (NMR) spectroscopy and imaging.
Mathematically, quantum mechanical spin states are described by vector-like objects known as spinors. There are subtle differences between the behavior of spinors and vectors under coordinate rotations. For example, rotating a spin-1/2 particle by 360 degrees does not bring it back to the same quantum state, but to the state with the opposite quantum phase; this is detectable, in principle, with interference experiments. To return the particle to its exact original state, one needs a 720 degree rotation. A spin-zero particle can only have a single quantum state, even after torque is applied. Rotating a spin-2 particle 180 degrees can bring it back to the same quantum state and a spin-4 particle should be rotated 90 degrees to bring it back to the same quantum state. The spin 2 particle can be analogous to a straight stick that looks the same even after it is rotated 180 degrees and a spin 0 particle can be imagined as sphere which looks the same after whatever angle it is turned through.
http://en.m.wikipedia.org/wiki/Spin_(physics)
Some very interesting new experiments coming out now testing quantum theory and I predict soon we will be capable of testing for proof of brane theory.
The quantum mechanics of our universe seem to work out according to it, but finding proof of what happened before the big bang is going to be difficult.