What's new
  • ICMag with help from Landrace Warden and The Vault is running a NEW contest in November! You can check it here. Prizes are seeds & forum premium access. Come join in!

IBL's

G

Guest

Cosmic Toker said:
Do you guys think it's possible to breed an IBL indoors and if so what constitutes an IBL...?

i believe its possible, just a longer endevor.

IBL is used in many different ways. you have a line and have been inbreedin 4 to 5 generations, some constitute that as bein a IBL.

some believe ya cant have a IBL if you didnt start with 2 stable IBL lines as parents. a shitty breeder could go 6 generations and never get to what some feel is IBL.

to me IBL is a line that has been inbred for many generations, the amount of generations depends on if you have achieved your ideal line. nailin down what you intended from the start.

a IBL should be able to be open pollinated in the open, many many plants at once, and they should all be very uniform, and breed true each time out.

Deep Chunk is rumored to have been bred close to 20 generations. there is still observable differin phenotypes within a population as small as 10 plants.
 

Closet Funk

CeRtIfIeD OrGaNiC!
Veteran
To me if I see IBL beside a strain I expect it to be pretty stable and great for breeding purposes. I think making an IBL requires indoor and outdoor cultivation.
 

Grat3fulh3ad

The Voice of Reason
Veteran
Perhaps a good place for you to start is by researching within the realm of genetic research done in relation to legal plants...
Here is an example of a good read which will give one greater understanding of the plant breeding, strain creation process, including Inbred Lines...
http://www.nal.usda.gov/bic/Biotech_Patents/1995patents/05416262.html
Remembering that when they discuss specific environments, Indoor Growing could be considered as a specific climate for plant growth...
And also remembering that When they Discuss Numbers of Years needed to develop a line, In an indoor environment Generations would be equal to years...
A careful read of this Article will answer alot of These IBL questions, for anyone interested... Definately think it will clear up some of the 'rules' of calling a seedline an IBL...
 

Grat3fulh3ad

The Voice of Reason
Veteran
The Patent Article for those who don't click links... It is about corn hybrids and inbred lines...
PATN Patent Bibliographic Information

WKU Patent Number: 05416262
SRC Series Code: 8
APN Application Number: 9634177
APT Application Type: 1
ART Art Unit: 183
APD Application Filing Date: 19931206
TTL Title of Invention: Inbred corn line LH186
ISD Issue Date: 19950516
NCL Number of Claims: 11
ECL Exemplary Claim Number: 1
EXA Assistant Examiner: Veitenheimer; Erich E.
EXP Primary Examiner: Benzion; Gary
INVT Inventor Information

NAM Inventor Name: Miller; Richard J.
CTY Inventor City: Williamsburg
STA Inventor State: IA
ASSG Assignee Information

NAM Assignee Name: Holden's Foundation Seeds Inc.
CTY Assignee City: Williamsburg
STA Assignee State: IA
COD Assignee Type Code: 02
CLAS Classification

OCL Original U.S. Classification: 800200
XCL Cross Reference Classification: 800250
XCL Cross Reference Classification: 800DIG56
XCL Cross Reference Classification: 4352404
XCL Cross Reference Classification: 43524049
XCL Cross Reference Classification: 4352405
XCL Cross Reference Classification: 47 58
XCL Cross Reference Classification: 47DIG1
EDF International Classification Edition Field: 6
ICL International Classification: A01H 500
ICL International Classification: A01H 400
ICL International Classification: C12N 504
FSC Field of Search Class: 435
FSS Field of Search Subclass: 172.1;172.3;240.4;240.4
9;240.5
FSC Field of Search Class: 536
FSS Field of Search Subclass: 27
FSC Field of Search Class: 800
FSS Field of Search Subclass: 200;250;DIG. 52;53
FSC Field of Search Class: 935
FSS Field of Search Subclass: 18
FSC Field of Search Class: 47
FSS Field of Search Subclass: 58.03
OREF Other Reference

MBS, Inc. Genetics Handbook 17th Edition 1990 pp. 2.3 & 22-23 MBS., Inc., Ames, Iowa.

Bradley et al. 1988. J. Prod. Agric. 1(1):34-38.

Mallauer et al. 1988, In Corn and Corn Improvement Sprague et al., eds. Ch. 8: 463-564.

Green et al. 1975. Crop Science. 15:417-421.

Meghji et al. 1984 Crop Science 24:545-549.

Wright 1980 In Hybridization of Crop Plants Fehr et al., eds. Ch 8: 161-176.

Wych 1988 In Corn and Corn Impovement Sprague et al., eds. Ch 9: 565-607.

PVP Certificate, Variety LH59 1988 No. 8700213.

PVP Certificate, Variety LH123Ht 1985 No. 8400030.

LREP Legal Information
FRM Legal Firm: Henderson & Sturm

ABST Abstract

An inbred corn line, designated LH186, is disclosed. The invention relates to the seeds of inbred corn line LH186, to the plants of inbred corn line LH186 and to methods for producing a corn plant produced by crossing the inbred line LH186 with itself or another corn line. The invention further relates to hybrid corn seeds and plants produced by crossing the inbred line LH186 with another corn line.

BSUM Brief Summary

BACKGROUND OF THE INVENTION

The present invention relates to a new and distinctive corn inbred line, designated LH186. There are numerous steps in the development of any novel, desirable plant germplasm. Plant breeding begins with the analysis and definition of problems and weaknesses of the current germplasm, the establishment of program goals, and the definition of specific breeding objectives. The next step is selection of germplasm that possess the traits to meet the program goals. The goal is to combine in a single variety or hybrid an improved combination of desirable traits from the parental germplasm. These important traits may include higher yield, resistance to diseases and insects, better stalks and roots, tolerance to drought and heat, and better agronomic quality.

Choice of breeding or selection methods depends on the mode of plant reproduction, the heritability of the trait(s) being improved, and the type of cultivar used commercially (e.g., F.sub.1 hybrid cultivar, pureline cultivar, etc.). For highly heritable traits, a choice of superior individual plants evaluated at a single location will be effective, whereas for traits with low heritability, selection should be based on mean values obtained from replicated evaluations of families of related plants. Popular selection methods commonly include pedigree selection, modified pedigree selection, mass selection, and recurrent selection.

The complexity of inheritance influences choice of the breeding method. Backcross breeding is used to transfer one or a few favorable genes for a highly heritable trait into a desirable cultivar. This approach has been used extensively for breeding disease-resistant cultivars. Various recurrent selection techniques are used to improve quantitatively inherited traits controlled by numerous genes. The use of recurrent selection in self-pollinating crops depends on the ease of pollination, the frequency of successful hybrids from each pollination, and the number of hybrid offspring from each successful cross.

Each breeding program should include a periodic, objective evaluation of the efficiency of the breeding procedure. Evaluation criteria vary depending on the goal and objectives, but should include gain from selection per year based on comparisons to an appropriate standard, overall value of the advanced breeding lines, and number of successful cultivars produced per unit of input (e.g., per year, per dollar expended, etc.).

Promising advanced breeding lines are thoroughly tested and compared to appropriate standards in environments representative of the commercial target area(s) for three years at least. The best lines are candidates for new commercial cultivars; those still deficient in a few traits are used as parents to produce new populations for further selection.

These processes, which lead to the final step of marketing and distribution, usually take from eight to 12 years from the time the first cross is made. Therefore, development of new cultivars is a time-consuming process that requires precise forward planning, efficient use of resources, and a minimum of changes in direction. (NOTE FROM H3AD: 8 - 12 generations)

A most difficult task is the identification of individuals that are genetically superior, because for most traits the true genotypic value is masked by other confounding plant traits or environmental factors. One method of identifying a superior plant is to observe its performance relative to other experimental plants and to a widely grown standard cultivar. If a single observation is inconclusive, replicated observations provide a better estimate of its genetic worth.

The goal of plant breeding is to develop new, unique and superior corn inbred lines and hybrids. The breeder initially selects and crosses two or more parental lines, followed by repeated selfing and selection, producing many new genetic combinations. The breeder can theoretically generate billions of different genetic combinations via crossing, selfing and mutations. The breeder has no direct control at the cellular level. Therefore, two breeders will never develop the same line, or even very similar lines, having the same corn traits. Each year, the plant breeder selects the germplasm to advance to the next generation. This germplasm is grown under unique and different geographical, climatic and soil conditions, and further selections are then made, during and at the end of the growing season. The inbred lines which are developed are unpredictable. This unpredictability is because the breeder's selection occurs in unique environments, with no control at the DNA level (using conventional breeding procedures), and with millions of different possible genetic combinations being generated. A breeder of ordinary skill in the art cannot predict the final resulting lines he develops, except possibly in a very gross and general fashion. The same breeder cannot produce the same line twice by using the exact same original parents and the same selection techniques. This unpredictability results in the expenditure of large research monies to develop a superior new corn inbred line.

The development of commercial corn hybrids requires the development of homozygous inbred lines, the crossing of these lines, and the evaluation of the crosses. Pedigree breeding and recurrent selection breeding methods are used to develop inbred lines from breeding populations. Breeding programs combine desirable traits from two or more inbred lines or various broad-based sources into breeding pools from which inbred lines are developed by selfing and selection of desired phenotypes. The new inbreds are crossed with other inbred lines and the hybrids from these crosses are evaluated to determine which have commercial potential.

Pedigree breeding is used commonly for the improvement of self-pollinating crops or inbred lines of cross-pollinating crops. Two parents which possess favorable, complementary traits are crossed to produce an F.sub.1. An F.sub.2 population is produced by selfing one or several F.sub.1 's or by intercrossing two F.sub.1 's (sib mating). Selection of the best individuals is usually begun in the F.sub.2 population; then, beginning in the F.sub.3, the best individuals in the best families are selected. Replicated testing of families, or hybrid combinations involving individuals of these families, often follows in the F.sub.4 generation to improve the effectiveness of selection for traits with low heritability. At an advanced stage of inbreeding (i.e., F.sub.6 and F.sub.7), the best lines or mixtures of phenotypically similar lines are tested for potential release as new cultivars.

Mass and recurrent selections can be used to improve populations of either self-or cross-pollinating crops. A genetically variable population of heterozygous individuals is either identified or created by intercrossing several different parents. The best plants are selected based on individual superiority, outstanding progeny, or excellent combining ability. The selected plants are intercrossed to produce a new population in which further cycles of selection are continued.

Backcross breeding has been used to transfer genes for a simply inherited, highly heritable trait into a desirable homozygous cultivar or inbred line which is the recurrent parent. The source of the trait to be transferred is called the donor parent. The resulting plant is expected to have the attributes of the recurrent parent (e.g., cultivar) and the desirable trait transferred from the donor parent. After the initial cross, individuals possessing the phenotype of the donor parent are selected and repeatedly crossed (backcrossed) to the recurrent parent. The resulting plant is expected to have the attributes of the recurrent parent (e.g., cultivar) and the desirable trait transferred from the donor parent.

Descriptions of other breeding methods that are commonly used for different traits and crops can be found in one of several reference books (e.g., Allard, 1960; Simmonds, 1979; Sheep et al., 1979; Fehr, 1987).

Proper testing should detect any major faults and establish the level of superiority or improvement over current cultivars. In addition to showing superior performance, there must be a demand for a new cultivar that is compatible with industry standards or which creates a new market. The introduction of a new cultivar will incur additional costs to the seed producer, the grower, processor and consumer; for special advertising and marketing, altered seed and commercial production practices, and new product utilization. The testing preceding release of a new cultivar should take into consideration research and development costs as well as technical superiority of the final cultivar. For seed-propagated cultivars, it must be feasible to produce seed easily and economically.

Once the inbreds that give the best hybrid performance have been identified, the hybrid seed can be reproduced indefinitely as long as the homogeneity of the inbred parent is maintained. A single-cross hybrid is produced when two inbred lines are crossed to produce the F.sub.1 progeny. A double-cross hybrid is produced from four inbred lines crossed in pairs (A.times.B and C.times.D) and then the two F.sub.1 hybrids are crossed again (A.times.B).times.(C.times.D). Much of the hybrid vigor exhibited by F.sub.1 hybrids is lost in the next generation (F.sub.2). Consequently, seed from hybrid varieties is not used for planting stock.

Corn is an important and valuable field crop. Thus, a continuing goal of plant breeders is to develop stable, high yielding corn hybrids that are agronomically sound. The reasons for this goal are obviously to maximize the amount of grain produced on the land used and to supply food for both animals and humans. To accomplish this goal, the corn breeder must select and develop corn plants that have the traits that result in superior parental lines for producing hybrids.

SUMMARY OF THE INVENTION

According to the invention, there is provided a novel inbred corn line, designated LH186. This invention thus relates to the seeds of inbred corn line LH186, to the plants of inbred corn line LH186 and to methods for producing a corn plant produced by crossing the inbred line LH186 with itself or another corn line. This invention further relates to hybrid corn seeds and plants produced by crossing the inbred line LH186 with another corn line.

DEFINITIONS

In the description and tables which follow, a number of terms are used. In order to provide a clear and consistent understanding of the specification and claims, including the scope to be given such terms, the following definitions are provided:

Predicted RM. This trait for a hybrid, predicted relative maturity (RM), i s
based on the harvest moisture of the grain. The relative maturity rating is based on a known set of checks and utilizes conventional maturity systems such as the Minnesota Relative Maturity Rating System.

MN RM. This represents the Minnesota Relative Maturity Rating (MN RM) for the hybrid and is based on the harvest moisture of the grain relative to a standard set of checks of previously determined MN RM rating. Regression analysis is used to compute this rating.

Yield (Bushels/Acre). The yield in bushels/acre is the actual yield of the grain at harvest adjusted to 15.5% moisture.

Moisture. The moisture is the actual percentage moisture of the grain at harvest.

GDU Silk. The GDU silk (=heat unit silk) is the number of growing degree units (GDU) or heat units required for an inbred line or hybrid to reach silk emergence from the time of planting. Growing degree units are calculated by the Barger Method, where the heat units for a 24-hour period are:
##EQU1##
The highest maximum used is 86.degree. F. and the lowest minimum used is 50 .degree. F. For each hybrid, it takes a certain number of GDUs to reach various stages of plant development. GDUs are a way of measuring plant maturity.

Stalk Lodging. This is the percentage of plants that stalk lodge, i.e., stalk breakage, as measured by either natural lodging or pushing the stalks determining the percentage of plants that break off below the ear. This is a relative rating of a hybrid to other hybrids for standability.

Root Lodging. The root lodging is the percentage of plants that root lodge ;
i.e., those that lean from the vertical axis at an approximate 30.degree. angle or greater would be counted as root lodged.

Plant Height. This is a measure of the height of the hybrid from the groun d
to the tip of the tassel, and is measured in centimeters.

Ear Height. The ear height is a measure from the ground to the ear node attachment, and is measured in centimeters.

Dropped Ears. This is a measure of the number of dropped ears per plot, an d
represents the percentage of plants that dropped an ear prior to harvest.

DETD Detail Description

DETAILED DESCRIPTION OF THE INVENTION

Inbred corn line LH 186 is a yellow dent corn with superior characteristics, and provides an excellent parental line in crosses for producing first generation (F.sub.1) hybrid corn. LH186 was developed from the single cross LH59.times.LH123 by selfing and using the pedigree system of plant breeding. Selfing and selection were practiced within the above F.sub.1 cross for seven generations in the development of LH186.

Some of the criteria used to select ears in various generations include: yield, stalk quality, root quality, disease tolerance, late plant greenness, late season plant intactness, ear retention, pollen shedding ability, silking ability, and corn borer tolerance. During the development of the line, crosses were made to inbred testers for the purpose of estimating the line's general and specific combining ability, and evaluations were run by the Williamsburg, Iowa Research Station. The inbred was evaluated further as a line and in numerous crosses by the Williamsburg and other research stations across the Corn Belt. The inbred has proven to have a very good combining ability in hybrid combinations.

The inbred has shown uniformity and stability for all traits, as described in the following variety description information. It has been self-pollinated and ear-rowed a sufficient number of generations, with careful attention to uniformity of plant type to ensure homozygosity and phenotypic stability. The line has been increased both by hand and sibbed in isolated fields with continued observation for uniformity. No variant traits have been observed or are expected in LH 186.

Inbred corn line LH 186 has the following morphologic and other characteristics (based primarily on data collected at Williamsburg, Iowa):

VARIETY DESCRIPTION INFORMATION

Maturity
INBRED=LH186

Best Adapted For: Northcentral Regions of the Corn Belt

Heat Unit Silk: 1449
##EQU2##

B. Plant Characteristics

Plant height (to tassel tip): 227 cm.

Length of top ear internode: 18 cm.

Number of tillers: None

Cytoplasm type: Normal

Number of ears per stalk: Strong two-ear tendency

Ear height (to base of top ear): 83 cm.

C. Leaf

Color: 7.5 GY 3/5 Munsell Color Charts for Plant Tissues

Angle from stalk: >60.degree.

Marginal waves: few

Width (widest point of ear node leaf): 09 cm.

Number of leaves (mature plants): 12

Sheath pubescence: Medium

Longitudinal creases: Few

Length (ear node leaf): 76 cm.

D. Tassel

Number of lateral branches: 5

Branch angle from central spike: 30.degree.-40.degree.

Pollen shed: Heavy

Anther color: Yellow

Glume color: Green

Peduncle length (top leaf to basal branch): 01 cm.

E. Ear (Husked Ear Data Except When Stated Otherwise)

Length: 15 cm.

Midpoint diameter: 35 mm.

Weight: 56 gm.

Number of Kernel rows: 12

Silk color: Green

Husk color (fresh): Light green

Husk color (dry): Buff

Husk extension: Long (8-10 cm.)

Shank length: 12 cm.

Shank (no. of internodes): 9

Taper of Ear: Average

Husk leaf: Long >15 cm.

Position of shank (dry husks): Upright

F. Kernel (Dried)

Size (from ear midpoint)

Length: 10 mm.

Width: 09 mm.

Thickness: 04 mm.

Shape grade (% rounds): 40-60

Pericarp color: Variegated: bronze at the pedicel becoming colorless at the crown

Aleurone color: White

Endosperm color: Yellow

Endosperm type: Normal starch

Gm Weight/100 seeds (tinsized): 19 gm.

G. Cob

Diameter at midpoint: 25 mm.

Strength: Strong

Color: White

This invention is also directed to methods for producing a corn plant by crossing a first parent corn plant with a second parent corn plant, wherein the first or second corn plant is the inbred corn plant from the line LH186. Further, both first and second parent corn plants may be from the inbred line LH186. Therefore, any methods using the inbred corn line LH186 are part of this invention: selfing, backcrosses, hybrid breeding, and crosses to populations. Any plants produced using inbred corn line LH186 as a parent are within the scope of this invention. Advantageously, the inbred corn line is used in crosses with other corn varieties to produce first generation (F.sub.1) corn hybrid seed and plants with superior characteristics.

As used herein, the term "plant" includes plant cells, plant protoplasts, plant cell of tissue culture from which corn plants can be regenerated, plant calli, plant clumps, and plant cells that are intact in plants or parts of plants, such as pollen, flowers, kernels, ears, cobs, leaves, husks, stalks, and the like.

Tissue culture of corn is described in European patent application, No. 160,390, incorporated herein by reference. Corn tissue culture procedures are also described in Green and Rhodes, "Plant Regeneration in Tissue Culture of Maize", Maize for Biological Research (Plant Molecular Biology Association, Charlottesville, Va. 1982), at 367-372. Thus, another aspect of this invention is to provide for cells which upon growth and differentiation produce the inbred line LH186.

LH186 is a line developed from an F.sub.1 plant of the cross between LH59 and LH123. LH186 most closely resembles LH59 in plant and ear type.

LH186 in hybrid combination is higher yielding than LH59 hybrids. LH186 hybrids are consistent performance which was not a characteristic associated with LH123. LH186 hybrids are dryer than hybrids using either parent LH59 or LH123. This drying ability which is normally exhibited along with LH186's consistently high yields is uniquely advantageous over LH186's parents.

As a line LH186 has smaller seed, and therefore makes a more advantageous seed parent in foundation seed fields than either of its parents. LH186 hybrids may be longer eared than either parents hybrids, and LH186 hybrids are much more intact late in the season than LH59 hybrids. LH186 appears to have better second brood corn borer tolerance than its parent LH59.

TABLES

In the tables that follow, the traits and characteristics of inbred corn line LH186 are given in hybrid combination. The data collected on inbred corn line LH186 is presented for the key characteristics and traits. The tables present yield test information about LH186. LH186 was tested in several hybrid combinations at eight locations, with two or three replicalions per location. Information about these hybrids, as compared to several check hybrids, is presented.

The first pedigree listed in the comparison group is the hybrid containing LH186. Information for the pedigree includes:

Mean yield of the hybrid across all locations.
A mean for the percentage moisture (% M) for the hybrid across all locations.
A mean of the yield divided by the percentage moisture (Y/M) for the hybrid across all locations.
A mean of the percentage of plants with stalk lodging (% SL) across all locations.
A mean of the percentage of plants with root lodging (% RL) across all locations.
A mean of the percentage of plants with dropped ears (% DE).
The number of locations indicates the locations where these hybrids were tested together.
The series of hybrids listed under the hybrid containing LH186 are considered check hybrids. The check hybrids are compared to hybrids containing the inbred LH 186.

The (+) or (-) sign in front of each number in each of the columns indicates how the mean values across plots of the hybrid containing inbred LH186 compare to the check crosses. A (+) or (-) sign in front of the number indicates that the mean of the hybrid containing inbred LH168 was greater or lesser, respectively, than the mean of the check hybrid. For example, a +4 in yield signifies that the hybrid containing inbred LH186 produced 4 bushels more corn than the check hybrid. If the value of the stalks has a (-) in front of the number 2, for example, then the hybrid containing the inbred LH186 had 2% less stalk lodging than the check hybrid.

TBL TABLE 1
______________________________________
Overall Comparisons of
LH186 .times. LH132 Hybrid Vs. Check Hybrid
Mean % % %
Hybrid Yield % M Y/M SL RL DE
______________________________________
LH186 .times. LH132
196 19.72 9.94 3 6 0
(at 21 Loc's)
as compared to:
LH132 .times. LH212
-12 -2.55 -.60 +1 +2 0
LHE136 .times. LH82
+7 -1.73 -1.14 +1 +3 0
LH132 .times. LH59
+2 -1.25 +.69 +1 +1 0
LH204 .times. LH212
-13 -.76 -.28 0 0 0
______________________________________

TBL TABLE 2
______________________________________
Overall Comparisons of
LH186 .times. LH198 Hybrid Vs. Check Hybrid
Mean % % %
Hybrid Yield % M Y/M SL RL DE
______________________________________
LH186 .times. LH198
206 19.50 10.54 2 4 0
(at 21 Loc's)
as compared to:
LH132 .times. LH82
+12 -2.32 +1.68 -1 -2 0
LH204 .times. LH212
-9 -1.68 +.42 -2 -1 0
LH132 .times. LH59
-1 -1.41 +.68 0 0 0
LH205 .times. LH216
+5 -1.38 +.93 0 -1 0
LH198 .times. LH59
-4 -1.08 +.35 +1 -1 0
LH198 .times. LH82
+11 -.95 +1.05 0 -6 0
______________________________________

TBL TABLE 3
______________________________________
Overall Comparisons of
LH186 .times. LH195 Hybrid Vs. Check Hybrid
Mean % % %
Hybrid Yield % M Y/M SL RL DE
______________________________________
LH186 .times. LH195
207 18.94 10.93 3 3 0
(at 21 Loc's)
as compared to:
LH195 .times. LH212
-11 -1.91 +.45 -2 0 0
LH132 .times. LH212
-2 -1.06 +.47 -1 -1 0
LH195 .times. LH59
-3 -1.01 +.42 +1 -1 0
LH195 .times. LH184
-1 -.98 +.51 +1 +1 0
______________________________________

TBL TABLE 4
______________________________________
Overall Comparisons of
LH186 .times. LH74 Hybrid Vs. Check Hybrid
Mean % % %
Hybrid Yield % M Y/M SL RL DE
______________________________________
LH186 .times. LH74
180 19.90 9.04 4 4 0
(at 20 Loc's)
as compared to:
LH74 .times. LH51
-7 -3.45 -1.03 +2 -2 0
LH216 .times. LH206
-7 -3.07 -.92 +2 0 0
LH132 .times. LH165
+4 -2.31 -1.13 +1 0 0
LH132 .times. LH167
-7 -1.44 +.27 0 -1 0
LH202 .times. LH82
+6 -1.09 +.74 -4 -2 0
______________________________________

DEPOSIT INFORMATION

Inbred seeds of LH186 have been placed on deposit with the American Type
Culture Collection (ATCC), Rockville, Md. 20852, under Deposit Accession Number 75619 on Dec. 3, 1993. A Plant Variety Protection Certificate is being applied for with the United States Department of Agriculture.

Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity and understanding, it will be obvious that certain changes and modifications may be practiced within the scope of the invention, as limited only by the scope of the appended claims.

CLMS Claims

STM Claim Statement: What is claimed is:
NUM Claim Number: 1.

1. Inbred corn seed designated LH186 having ATCC accession No. 75619.
NUM Claim Number: 2.

2. A corn plant produced by growing the seed of claim 1.
NUM Claim Number: 3.

3. Pollen of the plant of claim 2.
NUM Claim Number: 4.

4. An ovule of the plant of claim 2.
NUM Claim Number: 5.

5. An inbred corn plant having all the physiological and morphological
characteristics of the corn plant of claim 2.
NUM Claim Number: 6.

6. A tissue culture comprising regenerable cells of the inbred corn plant
designated LH186.
NUM Claim Number: 7.

7. A corn plant regenerated from said tissue culture of claim 6, wherein
said regenerated corn plant has all the physiological and morphological characteristics of the corn plant of LH186. NUM Claim Number: 8.

8. A method for producing first generation (F.sub.1) hybrid corn seed, sai d
seed being capable of producing a hybrid corn plant having the characteristics of excellent plant intactness, excellent staygreen, and competitive grain yield when compared to similarly adapted hybrids, wherein the method comprises the steps of crossing a first inbred parent corn plant with a second inbred parent corn plant and harvesting the resultant first generation (F.sub.1) hybrid corn seed, wherein said first or second parent corn plant is the corn plant of claim 2. NUM Claim Number: 9.

9. The method of claim 8 wherein said corn plant of claim 2 is the female parent.
NUM Claim Number: 10.

10. The method of claim 8 wherein said corn plant of claim 2 is the male parent.
NUM Claim Number: 11.

11. A first generation (F.sub.1) hybrid corn plant produced by growing sai d
hybrid corn seed of claim 8.
 
Last edited:

Grat3fulh3ad

The Voice of Reason
Veteran
Did any of this help you understand better? or were you merely trolling rez about his SD ibl? I'm growing out the IBL now... I've smoked the SD cut and I grow a pheno of the V3 that I'd rather have, I'll chime in with my opinion of the IBL when I'm done with this grow...
 
IBL simply means true breeding for certain traits. There's no way you can germ two cannabis seeds and get 100% indentical specimens, it just wont happen. There's always going to be SOME variation, but it has to be an acceptable amount of variation. The problem is, of course, the more you inbreed the more you shrink the gene pool of that strain and the more you're also fixing negative recessive traits within that gene pool, so it's a delicate balancing act to create a propper IBL strain.
 
that was a good read Head. Thanks for sharing. I got some of the new batch SD IBL also. Im definatly going to do some crossing with mine, just have to figure out how i want to go about it.

i have a pretty interesting cross of Afghani#1 X Dj short blueberry. If I use The best Female of that cross, and pollenate it with a SD Male, would it give me a fairly stable (afghani X Blue) X SD f1?

If I made f2's would there be a huge variation of phenos?

Or would I be better off crossing the SD to a another IBL or landrace?
 
Last edited:

Grat3fulh3ad

The Voice of Reason
Veteran
ScorpiokinG said:
that was a good read Head. Thanks for sharing. I got some of the new batch SD IBL also. Im definatly going to do some crossing with mine, just have to figure out how i want to go about it.

i have a pretty interesting cross of Afghani#1 X Dj short blueberry. If I use The best Female of that cross, and pollenate it with a SD Male, would it give me a fairly stable (afghani X Blue) X SD f1?

If I made f2's would there be a huge variation of phenos?

Or would I be better off crossing the SD to a another IBL or landrace?
In my opinion...

You'd get 4 or 5 pheno's from the polyhybrid 'F1s'

Yes, the F2's would have a large variation

yes, you'd be better off, most likely
 
Or would I be better off crossing the SD to a another IBL or landrace

What ever you do don't breed with the sour D thinking it's an IBL, it came from a single pheno of unknown ancestors that was OUTCROSSED indoors just a few years ago....who knows whats recessive in there just waiting to come out.

People mislabeling their work and calling things IBL's that are far far from being IBL's is what thins the gene pool in the long run.....it's bad voodoo.....It's so sad what money & bad laws are doing to cannabis
 
G

Guest

Cosmic, have you grown rez's IBL? Or was the purpose of this thread just to troll rez over his IBLs? I thought that the intent of this thread was an honest question until I read your last post, now I think that you are just trolling.
 

mace_ecam

Active member
Do you guys think it's possible to breed an IBL indoors
you'd need couple of hundred plants for that and a decade or two of time
i mean, to create a true IBL that won't suffer incest depression a few gens down the road
how many "breeders" are doing that?
there is certain problems that come with closet breeding

peace,

mace
 

Grat3fulh3ad

The Voice of Reason
Veteran
Some of the people who act like they know what they are talking about, seem to need a bit more education...
A lie, eh... just because a line begins with an outcross doesn't bean that the line cannot then be selectively inbred...
A line is a series of decendants, and inbreeding has most certainly occured with each successive genertation in the line... So the line has been inbred...
Where some of you are lacking understanding here, and seem to think that calling something an IBL is the same as calling it a landrace...
Wrong... Landraces are IBLs but IBLs are not necessarily landraces... A line can most certianly be called an inbred line, if it has only been selectively inbred for several sucessive generations...

You would need hundreds of plants, a couple of decades, and an isolated open pollenation program to 'create' landrace strains, but that is not what is being discussed here...

Mace ecam... You are quick to post up a fancy sounding term like Incest Depression... Funny because 'incest depression' is a psychological condition... I think the term you are hunting for is 'inbreeding depression'... Instead of just making people aware that there is such a thing as inbreeding depression, why don't you give us a definition, and explain how in applies to this model... Also don't you think that outbreeding depression should be mentioned in the same explanation?

As far as 'problems' with closet breeding... There can be problems dealing with any very specific environment... but plants to be grown in a specefic environment would perform better there if their ancestors have become adapted to that specific environment...
 

clearcutter

Active member
Grat3fulh3ad said:
Where some of you are lacking understanding here, and seem to think that calling something an IBL is the same as calling it a landrace...
Wrong...
I fully agree with you Grat3fulh3ad. It seems people get the terms ibl and landrace confused often.

Why do you need to grow outdoors to inbreed? Of course growing outside may allow you to have more of a selection to choose from, which would allow for the best selections to be choosen, which should give you better results. But a crappy ibl is still an ibl.
 

DocLeaf

procreationist
ICMag Donor
Veteran
very interesting stuff ppl :yes:

to add:

we notice that germination rates with ferral/outdoor IBLs are slower than in domestic/cultivated IBLs :chin:

for example, these C99 ibl took several weeks to germinate after sowing.



only whence the above where taken from an indoor prop. and placed outdoor in Spring did they started to hatch. (the ibl C99 line being procreated outdoor)

the shells on these seed were indeed thicker than most procreated shell-cases that we come across... the tap roots thicker an all.

such differences are often visable in landrace strains, ibl or otherwise, which aren't the same thing of course :wink:

keep it flowing... there's a light on, heavy glow
peace
dLeaf :joint:
 
Last edited:

Grat3fulh3ad

The Voice of Reason
Veteran
Why would being outdoors allow you 'better' selection? It does allow you to grow a larger number of plants at once (although I could start 150 seedlings four times a year, inside).

To me... breeding is all about selection... Although indoors, I look for exactly the plant I want to breed with... If i have to grow 1000 or 10 to find it, I've grown and smoked enough marijuana over the last 20 years to know exactly what I am looking for in a breeding parent, and I'll know when I find one... It's not just about numbers, every seed from any line has the same statistical chance to be an exceptional representative of that line...

With breeding being all about selection, then buying seeds is about Trusting the person making the selections.
 

DocLeaf

procreationist
ICMag Donor
Veteran
Grat3fulh3ad said:
Why would being outdoors allow you 'better' selection?

the outdoors is wild!!!

it's all about "survival factor" ...only da fittest of da fittest shall survive!!!


indoors is domesticated... weak genetics start to creep in,
plant easy get pest, mold and viral diseases...

most indoor genetic are (poly-)hybrid,,, dem have vigor sown in :wink:

jah bless,
dLeaf :joint:
 
Last edited:

DocLeaf

procreationist
ICMag Donor
Veteran
n.b. selection is about understanding the plant(s) ur working with, not numbers!!!

peace dLeaf :joint:
 

Latest posts

Latest posts

Top