http://www.sciencedirect.com/science/article/pii/S0042682205007798
A new eriophyid mite-borne membrane-enveloped virus-like complex isolated from plants
Abstract
A decade ago, a new mite-transmitted disease was described on wheat (Triticum aesativum) and maize (Zea mays) that due to its geographical location was referred to as High Plains Disease (HPD). To determine the etiology, we established colonies of HPD pathogen-transmitting eriophyid wheat curl mites (Aceria tosichella) on wheat plants for maintenance of a continuous source of infected material. Analyses of nucleic acid obtained from infected plants showed the presence of HPD-specific RNAs ranging from 1.5 to 8 kilobases, but comparisons between the sequence of cDNAs and the databases did not reveal any clear identity with known viruses. We demonstrate that a diagnostic HPD-specific 32-kDa protein that accumulates in plants is encoded by a small RNA species (RNA-s). Upon infestation of upper wheat parts with viruliferous mites, the RNA-s encoded protein becomes detectable within a few days in the roots, indicative of an effective virus-like mode of transport. Membranous particles, resembling those observed in thin sections of infected plants, were isolated and shown to envelope a thread-like ribonucleoprotein complex containing the RNA-s encoded 32-kDa protein. This complex was associated with single-stranded (−)-sense RNAs, whereas free (+)-sense RNA was only detected in total RNA of infected plants. Based on the collective properties, we conclude that HPD is caused by a newly emerged mite-borne virus, for which we propose the name Maize red stripe virus (MRStV).
A new eriophyid mite-borne membrane-enveloped virus-like complex isolated from plants
Abstract
A decade ago, a new mite-transmitted disease was described on wheat (Triticum aesativum) and maize (Zea mays) that due to its geographical location was referred to as High Plains Disease (HPD). To determine the etiology, we established colonies of HPD pathogen-transmitting eriophyid wheat curl mites (Aceria tosichella) on wheat plants for maintenance of a continuous source of infected material. Analyses of nucleic acid obtained from infected plants showed the presence of HPD-specific RNAs ranging from 1.5 to 8 kilobases, but comparisons between the sequence of cDNAs and the databases did not reveal any clear identity with known viruses. We demonstrate that a diagnostic HPD-specific 32-kDa protein that accumulates in plants is encoded by a small RNA species (RNA-s). Upon infestation of upper wheat parts with viruliferous mites, the RNA-s encoded protein becomes detectable within a few days in the roots, indicative of an effective virus-like mode of transport. Membranous particles, resembling those observed in thin sections of infected plants, were isolated and shown to envelope a thread-like ribonucleoprotein complex containing the RNA-s encoded 32-kDa protein. This complex was associated with single-stranded (−)-sense RNAs, whereas free (+)-sense RNA was only detected in total RNA of infected plants. Based on the collective properties, we conclude that HPD is caused by a newly emerged mite-borne virus, for which we propose the name Maize red stripe virus (MRStV).