C
c-ray
Graeme: I’d like to ask you some questions about your sap pH technique. One of the reasons that we travelled all the way to Spokane from Queensland in Australia was because I consider this finding of yours to be a major breakthrough. Our research department has been working with the sap pH concept for the past twelve months and we’ve yet to find an exception to your rule that acidic sap creates a pre-disposition toward disease. If a zucchini in the trial plots has powdery mildew, it’ll always have a sap pH below 6.4. We promote your concept on a wide scale in Australia.
Bruce: Because all cells in all living organisms have an ideal level of each of these elements, there had to be a relationship between the vibratory frequency and the pH of the plant sap because the presence or absence of these elements determines pH. When we found the link, it covered my rear to a certain extent because I was able to get away from talking vibratory frequency and begin talking pH, which everyone was familiar with. It’s not a big step to move from soil pH to plant pH as a valid analysis tool. In essence, I discovered that there was a direct correlation between the hydrogen content in the cell and plant health. At the ideal of 6.4, the hydrogen content of plant fluids is approximately 12%. If you calculate out all of the frequencies attributed to each element - add up their individual frequencies - you’ll come to the ideal frequency of a living plant. If there is more than 12% hydrogen and the plant sap is acidic, it will mean that you have displaced one of those elements and usually it turns out to be calcium or potassium. This displacement alters the vibratory frequency of that plant. So this is how I got into the pH concept in the first place.
http://bionutrient.org/sites/all/files/docs/Nutrition_Rules/GSait_Plant_Health-Energy_Management.pdf