Someone has surely patented cannabinoids for psoriasis in every way possible. With all the iffy patents and the highly regulated drug system, you may have to make oils for whatever ailment yourself for some time to come, regardless of the legal situation. Where the "science" is now:
Cannabinoids inhibit human keratinocyte proliferation through a non-CB1/CB2 mechanism and have a potential therapeutic value in the treatment of psoriasis
Jonathan D. Wilkinson, Elizabeth M. Williamson
Journal of Dermatological Science
Volume 45, Issue 2, February 2007, Pages 87–92
Abstract
BACKGROUND: Cannabinoids from cannabis (Cannabis sativa) are anti-inflammatory and have inhibitory effects on the proliferation of a number of tumorigenic cell lines, some of which are mediated via cannabinoid receptors. Cannabinoid (CB) receptors are present in human skin and anandamide, an endogenous CB receptor ligand, inhibits epidermal keratinocyte differentiation. Psoriasis is an inflammatory disease also characterised in part by epidermal keratinocyte hyper-proliferation.
OBJECTIVE: We investigated the plant cannabinoids Delta-9 tetrahydrocannabinol, cannabidiol, cannabinol and cannabigerol for their ability to inhibit the proliferation of a hyper-proliferating human keratinocyte cell line and for any involvement of cannabinoid receptors.
METHODS: A keratinocyte proliferation assay was used to assess the effect of treatment with cannabinoids. Cell integrity and metabolic competence confirmed using lactate-dehydrogenase and adenosine tri-phosphate assays. To determine the involvement of the receptors, specific agonist and antagonist were used in conjunction with some phytocannabinoids. Western blot and RT-PCR analysis confirmed presence of CB1 and CB2 receptors.
RESULTS: The cannabinoids tested all inhibited keratinocyte proliferation in a concentration-dependent manner. The selective CB2 receptor agonists JWH015 and BML190 elicited only partial inhibition, the non-selective CB agonist HU210 produced a concentration-dependent response, the activity of theses agonists were not blocked by either CB1/CB2 antagonists.
CONCLUSION: The results indicate that while CB receptors may have a circumstantial role in keratinocyte proliferation, they do not contribute significantly to this process. Our results show that cannabinoids inhibit keratinocyte proliferation, and therefore support a potential role for cannabinoids in the treatment of psoriasis.
Anti-inflammatory activity of topical THC in DNFB-mediated mouse allergic contact dermatitis independent of CB1 and CB2 receptors
E. Gaffal, M. Cron, N. Glodde, T. Tüting
Allergy
Volume 68, Issue 8, pages 994–1000, August 2013
Abstract
BACKGROUND: ∆(9) -Tetrahydrocannabinol (THC), the active constituent of Cannabis sativa, exerts its biological effects in part through the G-protein-coupled CB1 and CB2 receptors, which were initially discovered in brain and spleen tissue, respectively. However, THC also has CB1/2 receptor-independent effects. Because of its immune-inhibitory potential, THC and related cannabinoids are being considered for the treatment of inflammatory skin diseases. Here we investigated the mechanism of the anti-inflammatory activity of THC and the role of CB1 and CB2 receptors.
METHODS: We evaluated the impact of topically applied THC on DNFB-mediated allergic contact dermatitis in wild-type and CB1/2 receptor-deficient mice. We performed immunohistochemical analyses for infiltrating immune cells and studied the influence of THC on the interaction between T cells, keratinocytes and myeloid immune cells in vitro.
RESULTS: Topical THC application effectively decreased contact allergic ear swelling and myeloid immune cell infiltration not only in wild-type but also in CB1/2 receptor-deficient mice. We found that THC (1) inhibited the production of IFNγ by T cells, (2) decreased the production of CCL2 and of IFNγ-induced CCL8 and CXL10 by epidermal keratinocytes and (3) thereby limited the recruitment of myeloid immune cells in vitro in a CB1/2 receptor-independent manner.
CONCLUSIONS: Topically applied THC can effectively attenuate contact allergic inflammation by decreasing keratinocyte-derived pro-inflammatory mediators that orchestrate myeloid immune cell infiltration independent of CB1/2 receptors. This has important implications for the future development of strategies to harness cannabinoids for the treatment of inflammatory skin diseases.
Endocannabinoids Modulate Human Epidermal Keratinocyte Proliferation and Survival via the Sequential Engagement of Cannabinoid Receptor-1 and Transient Receptor Potential Vanilloid-1
Balázs I Tóth, Nóra Dobrosi, Angéla Dajnoki, Gabriella Czifra, Attila Oláh, Attila G Szöllősi, István Juhász, Koji Sugawara, Ralf Paus and Tamás Bíró
Journal of Investigative Dermatology (2011) 131, 1095–1104
Abstract
We have recently shown that lipid mediators of the emerging endocannabinoid system (ECS) are key players of growth control of the human pilosebaceous unit. In this study, we asked whether the prototypic endocannabinoid anandamide (N-arachidonoylethanolamine, AEA) has a role in growth and survival of epidermal keratinocytes (KCs). Using human cultured KCs and skin organ-culture models, and by employing combined pharmacological and molecular approaches, we provide early evidence that AEA markedly suppresses KC proliferation and induces cell death, both in vitro and in situ. Moreover, we present that these cellular actions are mediated by a most probably constitutively active signaling mechanism that involves the activation of the metabotropic cannabinoid receptor CB(1) and a sequential engagement of the "ionotropic cannabinoid receptor" transient receptor potential vanilloid-1 (TRPV1). Finally, we demonstrate that the cellular effects of AEA are most probably due to a Ca(2+) influx via the non-selective, highly Ca(2+)-permeable ion channel TRPV1, and the concomitant elevation of intracellular Ca(2+) concentration. The data reported here may encourage one to explore whether the targeted manipulation of the above signaling pathway of the cutaneous ECS could become a useful adjunct treatment strategy for hyperproliferative human dermatoses such as psoriasis or KC-derived skin tumors.
Cannabinoids inhibit human keratinocyte proliferation through a non-CB1/CB2 mechanism and have a potential therapeutic value in the treatment of psoriasis
Jonathan D. Wilkinson, Elizabeth M. Williamson
Journal of Dermatological Science
Volume 45, Issue 2, February 2007, Pages 87–92
Abstract
BACKGROUND: Cannabinoids from cannabis (Cannabis sativa) are anti-inflammatory and have inhibitory effects on the proliferation of a number of tumorigenic cell lines, some of which are mediated via cannabinoid receptors. Cannabinoid (CB) receptors are present in human skin and anandamide, an endogenous CB receptor ligand, inhibits epidermal keratinocyte differentiation. Psoriasis is an inflammatory disease also characterised in part by epidermal keratinocyte hyper-proliferation.
OBJECTIVE: We investigated the plant cannabinoids Delta-9 tetrahydrocannabinol, cannabidiol, cannabinol and cannabigerol for their ability to inhibit the proliferation of a hyper-proliferating human keratinocyte cell line and for any involvement of cannabinoid receptors.
METHODS: A keratinocyte proliferation assay was used to assess the effect of treatment with cannabinoids. Cell integrity and metabolic competence confirmed using lactate-dehydrogenase and adenosine tri-phosphate assays. To determine the involvement of the receptors, specific agonist and antagonist were used in conjunction with some phytocannabinoids. Western blot and RT-PCR analysis confirmed presence of CB1 and CB2 receptors.
RESULTS: The cannabinoids tested all inhibited keratinocyte proliferation in a concentration-dependent manner. The selective CB2 receptor agonists JWH015 and BML190 elicited only partial inhibition, the non-selective CB agonist HU210 produced a concentration-dependent response, the activity of theses agonists were not blocked by either CB1/CB2 antagonists.
CONCLUSION: The results indicate that while CB receptors may have a circumstantial role in keratinocyte proliferation, they do not contribute significantly to this process. Our results show that cannabinoids inhibit keratinocyte proliferation, and therefore support a potential role for cannabinoids in the treatment of psoriasis.
Anti-inflammatory activity of topical THC in DNFB-mediated mouse allergic contact dermatitis independent of CB1 and CB2 receptors
E. Gaffal, M. Cron, N. Glodde, T. Tüting
Allergy
Volume 68, Issue 8, pages 994–1000, August 2013
Abstract
BACKGROUND: ∆(9) -Tetrahydrocannabinol (THC), the active constituent of Cannabis sativa, exerts its biological effects in part through the G-protein-coupled CB1 and CB2 receptors, which were initially discovered in brain and spleen tissue, respectively. However, THC also has CB1/2 receptor-independent effects. Because of its immune-inhibitory potential, THC and related cannabinoids are being considered for the treatment of inflammatory skin diseases. Here we investigated the mechanism of the anti-inflammatory activity of THC and the role of CB1 and CB2 receptors.
METHODS: We evaluated the impact of topically applied THC on DNFB-mediated allergic contact dermatitis in wild-type and CB1/2 receptor-deficient mice. We performed immunohistochemical analyses for infiltrating immune cells and studied the influence of THC on the interaction between T cells, keratinocytes and myeloid immune cells in vitro.
RESULTS: Topical THC application effectively decreased contact allergic ear swelling and myeloid immune cell infiltration not only in wild-type but also in CB1/2 receptor-deficient mice. We found that THC (1) inhibited the production of IFNγ by T cells, (2) decreased the production of CCL2 and of IFNγ-induced CCL8 and CXL10 by epidermal keratinocytes and (3) thereby limited the recruitment of myeloid immune cells in vitro in a CB1/2 receptor-independent manner.
CONCLUSIONS: Topically applied THC can effectively attenuate contact allergic inflammation by decreasing keratinocyte-derived pro-inflammatory mediators that orchestrate myeloid immune cell infiltration independent of CB1/2 receptors. This has important implications for the future development of strategies to harness cannabinoids for the treatment of inflammatory skin diseases.
Endocannabinoids Modulate Human Epidermal Keratinocyte Proliferation and Survival via the Sequential Engagement of Cannabinoid Receptor-1 and Transient Receptor Potential Vanilloid-1
Balázs I Tóth, Nóra Dobrosi, Angéla Dajnoki, Gabriella Czifra, Attila Oláh, Attila G Szöllősi, István Juhász, Koji Sugawara, Ralf Paus and Tamás Bíró
Journal of Investigative Dermatology (2011) 131, 1095–1104
Abstract
We have recently shown that lipid mediators of the emerging endocannabinoid system (ECS) are key players of growth control of the human pilosebaceous unit. In this study, we asked whether the prototypic endocannabinoid anandamide (N-arachidonoylethanolamine, AEA) has a role in growth and survival of epidermal keratinocytes (KCs). Using human cultured KCs and skin organ-culture models, and by employing combined pharmacological and molecular approaches, we provide early evidence that AEA markedly suppresses KC proliferation and induces cell death, both in vitro and in situ. Moreover, we present that these cellular actions are mediated by a most probably constitutively active signaling mechanism that involves the activation of the metabotropic cannabinoid receptor CB(1) and a sequential engagement of the "ionotropic cannabinoid receptor" transient receptor potential vanilloid-1 (TRPV1). Finally, we demonstrate that the cellular effects of AEA are most probably due to a Ca(2+) influx via the non-selective, highly Ca(2+)-permeable ion channel TRPV1, and the concomitant elevation of intracellular Ca(2+) concentration. The data reported here may encourage one to explore whether the targeted manipulation of the above signaling pathway of the cutaneous ECS could become a useful adjunct treatment strategy for hyperproliferative human dermatoses such as psoriasis or KC-derived skin tumors.