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Physiological functions of beneficial elements
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Aluminum (Al), cobalt (Co), sodium (Na), selenium (Se), and

silicon (Si) are considered beneficial elements for plants: they

are not required by all plants but can promote plant growth and

may be essential for particular taxa. These beneficial elements

have been reported to enhance resistance to biotic stresses

such as pathogens and herbivory, and to abiotic stresses such

as drought, salinity, and nutrient toxicity or deficiency. The

beneficial effects of low doses of Al, Co, Na and Se have

received little attention compared to toxic effects that typically

occur at higher concentrations. Better understanding of the

effects of beneficial elements is important to improve crop

productivity and enhance plant nutritional value for a growing

world population.
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Introduction
Essential elements are required to complete an organ-

ism’s life cycle. Of the 92 known elements on earth, 17 are

known to be essential to all plants. They are divided into

macronutrients and micronutrients. The macronutrients

include C, H, O, Ca, K, Mg, N, S, and P, of which C, H

and O make up roughly 95% of plant dry matter and the

others are typically present at>1000 mg kg�1 dry weight.

The micronutrients (also called trace elements) include

Cl, B, Cu, Fe, Mn, Mo, Ni, and Zn, which are typically

present at <100 mg kg�1 dry weight. Owing to their

requirement at very low levels, it is possible that

additional micronutrients will be identified in the future.

Elements that promote growth and may be essential to

particular taxa but are not required by all plants are called

beneficial elements. The five most investigated beneficial

elements are Al, Co, Na, Se, and Si. All of these elements

promote growth for various taxa under certain environ-

mental conditions, however, the function and concen-

tration varies for each element and plant species. Clues to

the mechanisms that underlie the growth-promoting

effects of beneficial elements have been obtained using

various approaches. For instance, phenotypic differences

were studied between plants growing in the absence or

presence of the element, and tissue levels were deter-

mined at which the elements have a positive effect.

Beneficial effects that require high tissue concentration

suggest a structural or osmotic role, while effects at low

tissue concentration may indicate a role as cofactor for

specific enzymes. Furthermore, the plant taxa for which

the elements are beneficial were determined, giving clues

to the function of an element in a particular metabolic

pathway or a particular microbial symbiont. In addition,

determining the growth conditions under which the

elements have their beneficial effect, and studying the

beneficial effects in the context of plant ecology has been

useful, since some beneficial elements affect abiotic

stress resistance, or the interactions of plants with herbi-

vores, pathogens or symbionts. Below, and depicted in

Figure 1, is a summary of our current knowledge about

the beneficial effects of Al, Co, Na, Se, and Si on plants.

Aluminum
Aluminum (Al) is the third most abundant element in the

earth’s crust. At elevated levels Al is toxic to both plants and

animals, and most research on the metabolism of Al in

plants has focused on toxicity or tolerance mechanisms.

The bioavailability of Al is highest on acidic soils

(pH < 5.5), and much research has focused on anthropo-

genic factors that enhance Al levels in the environment,

such as mining and acid precipitation. Soluble Al is released

from acidic soils in the form of Al3+, Al(OH)2+ and Al(OH)2
+

[1]. Aluminum toxicity results in inhibition of root growth,

by altering root architecture and disrupting root elongation.

Many plants that live on acidic soils have developed Al

tolerance via either apoplastic or symplastic detoxification

mechanisms. Apoplastic mechanisms include cell wall

binding of Al (preventing transfer of Al into the symplasm),

root secretions that raise proximal soil pH (making Al less

bioavailable), and exudation of organic acids or mucilage

that complex Al (reducing Al mobility) [1–5]. Some species

tolerate Al in the symplast, often by storing it in less toxic

forms, complexed with organic acids [5].

While toxic at high levels, Al has been shown to be

beneficial to some plant species when supplied at low
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concentration. As early as 1937, Al was shown to increase

growth in Miscanthus sinensis (maiden grass) [6]. Since

then, multiple species, especially those native to acidic

soils, have shown enhanced growth in the presence of Al,

often coinciding with increased leaf phosphorus (P) con-

centrations [7]. In the presence of Al the tea plant,

Camellia sinensis, showed increased antioxidant enzyme

activity, which may contribute to increased plant growth

[8]. Melastoma malabathricum uses secreted mucilage to

accumulate high levels of Al from soils with low Al

availability; the accumulated Al increases root and shoot

growth, and prevents iron (Fe) toxicty [9–11]. It has been

suggested that Al is essential for the growth of M. mala-
bathricum [10]. Other species have also been shown to

accumulate Al to substantial levels, typically much higher

than the surrounding vegetation. Jansen et al. [12] pro-

posed that plants with more than 1000 mg Al per kg dry

weight in their leaf tissues be termed hyperaccumulators.

Hyperaccumulators may use the Al in their tissues to

deter herbivory, similar to other metals that are hyper-

accumulated by plants. In support of this hypothesis, Al

application prevented herbivory of tall fescue (Festuca
arundinacea) [13]. Aluminum accumulators often account

for a high percentage of plants growing on acidic soils and

it is possible that a plant’s ability to accumulate Al is a

competitive advantage on soils with high Al availability

[14].

Cobalt
Cobalt (Co) is not very abundant: its concentration ranges

between 15 and 25 ppm in soils, and is around 0.04 ppm

in natural waters. Co concentration in plants is typically in

the range of 0.1–10 ppm on a dry weight basis [15]. A

recent study on 670 species of terrestrial plants showed

that leaf Co concentration was in general less than

0.2 ppm, with the exception of Ericales, Euasterids and

Asparagales clades, where 0.3–0.5 ppm of Co was

measured [16��]. Also, Baker et al. [17] have reported a

list of 26 Co hyperaccumulators, containing more than

1000 ppm Co in leaf tissues and for the majority belong-

ing to the families of Lamiaceae, Scrophulariaceae, Aster-

aceae, and Fabaceae.

In higher plants, Co has been reported to strongly bind to

roots, and to be mainly absorbed from the soil solution

through passive transport. As Co shares high chemical

268 Physiology and metabolism

Figure 1

Overview of the mechanisms responsible for the growth promoting effects of the five beneficial elements Al, Co, Na, Se, and Si. The classes of plants

for which the growth promoting effect is (particularly) dramatic is shown at the heading of each balloon text, and the roles/effects on plant metabolism

or anatomy are listed for each of the five elements in the respective balloons.
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similarity with nickel (Ni), it may be envisioned that the

two elements enter cells by the same plasma membrane

carriers. Indeed, transporters for both Co and Ni were

found in prokaryotes and fungi, and recently it has been

hypothesized that Co and Ni may be co-regulated in L.
japonicus [18]. Also, Baxter et al. [19] found that in

Arabidopsis plants grown under reduced Fe concentration

in the fertilizer solution the shoot concentration of Co

increased. The concurrent increase in expression of the

Fe transporter IRT1 lead the authors to conclude that Co

may be transported by IRT1.

While it has been known for many years that Co is an

essential element for animals and prokaryotes, a physio-

logical function for this element in higher plants has so far

not been established. Similar to other heavy metals, Co

causes toxicity to plants at high concentration, and most of

the recent literature focuses on the mechanisms through

which plants can cope with Co stress [20]. At low levels

however, Co can have a number of beneficial effects,

particularly in leguminous plants. In a recent study by

Gad [21] using pea plants (Pisum sativum L.), the appli-

cation of 8 ppm Co to the soil increased growth, nodule

number and weight, plant nutrient levels, as well as

seedpod yield and seed quality. These effects could most

likely be ascribed to the essentiality of Co for symbiotic

Rhizobia that live in the nodules of these leguminous

plants. Co is a component of cobalamin (vitamin B12),

which is required for the activity of several enzymes in

nitrogen-fixing microorganisms such as Rhizobium and

cyanobacteria [15].

Other beneficial effects reported for Co include retar-

dation of leaf senescence via inhibition of ethylene bio-

synthesis, and enhancement of drought resistance in

seeds. Co also stimulated isoquinoline accumulation

(an alkaloid) in medicinal plants, through upregulation

of the biosynthesis of aromatic amino acid precursors of

alkaloids [15]. This last effect may suggest that Co could

indirectly induce biotic stress resistance, but this hypoth-

esis has not been addressed yet. In hyperaccumulators of

Co, the high tissue Co levels may also offer direct protec-

tion from herbivory or pathogens, as was shown for other

hyperaccumulated elements. This potential elemental

defence, too, remains to be investigated. Since Co is

essential for mammals, fertilization of crops with Co will

have the additional beneficial effect of enhancing its

nutritional quality.

Sodium
Sodium (Na) has been studied more for its negative effect

at excess levels (salt stress) than as a beneficial or essential

element. Na+ is chemically similar to potassium (K+) and

likely enters plants mainly via non-selective cation trans-

porters, particulary K+ channels [22,23]. However, there

are also transporters in plants that are thought to specifi-

cally transport Na+. These Na+ transporters probably

have a main function in salt tolerance, by transporting

Na out of the root, into the vacuole, or into the shoot

phloem for export to the root.

Sodium has been shown to be an essential element for

plants that use C4 or CAM photosynthetic pathways [24].

These C4/CAM plants use phosphoenolpyruvate (PEP)

to fix atmospheric carbon for photosynthesis, and Na is

needed for the regeneration of PEP from pyruvate. There

are also numerous studies that show Na can act as a

beneficial element for plant growth in general. Owing

to the similarity of Na+ to K+, Na+ can replace K+ as a

cofactor for certain enzymes, and as osmoregulator for, for

example, stomatal movement and cell expansion. This is

particularly beneficial when K levels are limiting. There

is substantial variation between plant species in the

extent to which they can replace K+ with Na+ (natrophilic

vs. natrophobic species), and this ability is correlated with

the beneficial effect of Na on growth [25]. Even addition

of Na to K-replete plants can have a positive effect on

growth, perhaps because Na+ affects stomatal movement

somewhat differently than K+, leading to an overall higher

leaf water status, improving water use efficiency.

In certain halophytes (salt-loving plants, e.g. Atriplex) Na

is accumulated to high levels in the vacuoles, contributing

substantially to plant osmotic potential. This allows the

plant to take up water from salty or dry soils, which have

low water potential. Some aquatic halophytes have also

been reported to use Na to facilitate nitrate uptake, via a

Na+/NO3
� cotransporter [26]. Another group of special-

ized plants that may have a particular use for Na are

certain parasites such as dodder (Cuscuta attenuata). Kelly

and Horning [27] noted that parasites generally have a

higher Na concentration than their host plants, and

hypothesized that osmoregulatory dynamics may contrib-

ute to the extraction of water and nutrients from hosts.

In summary, Na is an essential trace element for certain

plants that use the C4 or CAM pathway. Some halophytic

plant species may also require Na to survive in their

natural habitat, since they accumulate high levels of

Na as a salt resistance mechanism. For the remaining

plant species, low levels of Na can have a beneficial effect

on growth, particularly in natrophilic species and under K-

deficient conditions or moderate drought stress. Thus,

depending on the crop species, fertilization with Na may

boost crop productivity. Fertilization with Na has an

additional beneficial effect on the plant’s nutritional

value and palatability, since animals require Na as an

essential nutrient.

Selenium
Selenium (Se) is not a very abundant element; soil levels

are typically below 1 ppm (mg/kg soil), but 4–100 ppm

can be found in seleniferous soils. Vegetation on most

soils contain less than 1 ppm Se (mg/kg plant dry weight).

Physiological functions of beneficial elements Pilon-Smits et al. 269
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On seleniferous soils most plant species contain

1–10 ppm Se, but so-called Se hyperaccumulator plants

(e.g. from the genera Stanleya and Astragalus) can accumu-

late 1000–15 000 ppm (0.1–1.5% Se), even from low

external concentrations. Selenium is chemically similar

to sulfur (S) and metabolized via the same mechanisms.

While the stoichiometry of Se and S in plants generally

reflects that of their environment, hyperaccumulators

typically contain elevated Se/S ratios, suggesting they

can preferentially take up Se by means of specialized

transporters. The main bioavailable form of Se in soils is

selenate, which can be taken up by plants via sulfate

transporters and assimilated into selenocysteine (SeCys)

and selenomethionine (SeMet). While Se is essential for

many animals and bacteria as well as the green alga

Chlamydomonas reinhardtii, it has not been shown to be

an essential element for higher plants [28]. The reason for

Se’s essentiality for some organisms is that it is a structural

component of specific selenoproteins and seleno-tRNAs.

Selenoproteins contain SeCys in their active site and

often have a redox function, such as the scavenging of

free radicals that cause oxidative stress and cancer. The

SeCys in selenoproteins is encoded by the opal stopcodon

when present in the context of a specific secondary

mRNA structure (SeCys insertion sequence). In higher

plants, SeCys insertion sequences have not yet been

found, and plant homologues of selenoproteins (e.g.

glutathione peroxidase, GPX) were found to contain

Cys instead of SeCys in their active site [29��].

While there is no proof of essentiality for Se in plants,

there have been reports of beneficial effects of Se on plant

growth. Among higher plants, the largest beneficial

effects of Se on growth (up to 2.8-fold higher biomass

with Se) have been observed in the Se hyperaccumulator

plants, and Se has been suggested to be essential for these

species [30]. Since the beneficial effect of Se on hyper-

accumulator growth was much less when the plants were

grown at lower phosphate levels, it has also been

suggested that Se may act as an antagonist against phos-

phate toxicity in hyperaccumulators [31]. Trace amounts

of Se also stimulated growth in a variety of non-hyper-

accumulator species including ryegrass, lettuce, potato,

and duckweed (for a review see [32]). The Se-supplied

plants showed lower levels of lipid peroxidation and

higher levels of GPX activity, and were more resistant

to ultraviolet radiation. The mechanism of this apparent

positive effect of Se on antioxidant capacity may be

direct, owing to antioxidant activity of selenocompounds,

or indirect, via Se-induced upregulation of general stress

resistance mechanisms.

There is mounting evidence that Se can also protect

plants from biotic stresses. Supply of Se to hyperaccu-

mulator and non-hyperaccumulator species protected the

plants from a wide variety of herbivores, as well as from

fungal infections [33�]. The protective action of Se

against biotic stresses may again be a combination of

direct and indirect effects. Volatile Se (dimethylselenide)

emitted by plants deters herbivores, and plant-accumu-

lated Se is toxic to herbivores and pathogens. Se treat-

ment has also been shown to upregulate plant JA and

ethylene production and the production of defence-

related proteins and upregulation of sulfate/selenate

assimilation [34]. Thus, fertilization with low doses of

Se may promote plant growth and increase resistance to

pests and other stresses.

While Se is generally metabolized by sulfur pathways,

there is some evidence that plants have evolved Se-

specific enzymes that facilitate Se accumulation, perhaps

to serve an ecological or physiological function. Hyper-

accumulators such as two-grooved milkvetch (Astragalus
bisulcatus), but also broccoli (Brassica oleracea) have a Se-

specific selenocysteine methyltransferase, leading to

accumulation of Se as relatively non-toxic methyl-sele-

nocysteine [35,36]. There is also a report of an Arabidopsis
thaliana Se-binding protein that conferred Se tolerance

when overexpressed [37].

Since Se is essential at low levels for humans and other

mammals, fertilization of crops with Se may not only

benefit plant productivity but may have the additional

benefit of enhancing its nutritional value [38]. The win-

dow between deficiency and toxicity is relatively narrow

for Se, so in case of biofortification with Se it is important

to carefully monitor the Se levels in the final food pro-

ducts, to avoid toxicity.

Silicon
Silicon (Si) is one of the earth’s most prevalent elements,

comprising more than 25% of the earth’s crust [39]. Si is

mainly available to plants as monosilicic acid, Si(OH)4, at

a typical concentration of 0.1–0.6 mM in soil water [40].

Once absorbed, Si is deposited as amorphous silica (SiO2-

nH2O) throughout the plant, mainly in the cell walls,

where it interacts with pectins and polyphenols, and

enhances cell wall rigidity and strength [41]. Si concen-

tration in the plant ranges from 0.1 to 15% of dry weight,

depending on the species [42]. In general, monocots show

higher levels of Si accumulation (10–15%) compared to

dicots (0.5% or less), particularly members of the com-

melinids clade orders Arecales and Poales [42]. Differ-

ences in Si accumulation among species have been

ascribed to differences in the root density of Si transpor-

ters, as well as to distinct mechanisms of Si loading into

the xylem (for a review see [43�]).

Although silicon is a major constituent of plants, to date

its essentiality has been proven only in members of the

Equisetaceae (e.g. horsetail, Equisetum arvense) and in

wetland Poaceae (e.g. paddy rice, Oryza sativa) [44,45].

However, on the basis of the definition of essentiality

given by Epstein and Bloom [40], Si may be considered a
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‘quasi essential’ element for plants because its deficiency

can cause various abnormalities with respect to plant

growth, development and reproduction. Supplement-

ation with Si exerts a number of beneficial effects on

growth and yield of several plant species, which include

improvement of leaf exposure to light, resistance to

lodging, decreased susceptibility to pathogens and root

parasites, and amelioration of abiotic stresses [25,46,47�].
Si depositions in the epidermal layer of the leaves are

thought to be responsible for the reduction of mutual leaf

shading by keeping leaves more erect, while in the roots

they can increase cell wall elasticity during root cell

elongation [25].

The most extensively studied beneficial effect of Si on

plant health is its role in reducing plant susceptibility to

fungal diseases [47�,48]. Two possible mechanisms of Si-

enhanced plant resistance to pathogens have been pro-

posed. One is that polymerized Si can reinforce the cell

walls by physically inhibiting fungal germ tube penetra-

tion of the epidermis, thereby impeding infections [49].

The other is that Si may act locally as a signal in triggering

natural defence responses in both dicots and monocots,

by stimulating the activity of such enzymes as chitinases,

peroxidases, polyphenol oxidases, and/or by increasing

the production of phenolic compounds, phytoalexins,

antimicrobial compounds and systemic stress signals (sal-

icylic acid, jasmonic acid and ethylene) [49,50,51]. Silicon

bioactivity has been compared to that of the known

activator/secondary messengers of systemic acquired

resistance (SAR), which can be considered the plant’s

equivalent of an immune system. Si has a similar saturable

effect and can significantly modulate the activity of post-

elicitation intracellular signaling systems, including the

mitogen activated protein (MAP) kinases [52�]. However,

different from SAR activators, the effect of Si on plant-

induced resistance to pathogens vanishes when Si supply

to plants is stopped, even though Si had irreversibly

accumulated [52�]. This is because only the soluble form

of Si within plants can induce defence responses, while

the polymerized fraction is almost inert.

Silicon can also prevent abiotic stress in plants. For

instance, Si can alleviate heavy metal toxicity symptoms

[46]. Several mechanisms have been proposed for this

phenomenon, which include reduction of metal avail-

ability to plants in the growth medium, regulation of

metal uptake and root-to-shoot transport, modulation of

the cation binding capacity of the cell wall, stimulation of

antioxidants, both enzymatic (e.g. superoxide dismutase,

ascorbate peroxidase, dehydroascorbate reductase and

glutatione reductase) and non-enzymatic (e.g. ascorbate

and glutathione), and complexation or co-precipitation of

toxic metal ions with Si in the cytoplasm (e.g. Zn, Cd and

Al silicates), followed by sequestration of the metals in

the vacuoles [41,46,53]. Other abiotic stresses that may be

Physiological functions of beneficial elements Pilon-Smits et al. 271

Table 1

Overview of mechanisms proposed to be responsible for the beneficial effects of the elements Al, Co, Na, Se, and Si.

Element Plant concentration Beneficial functions Mechanisms hypothesized

Al <0.1% non-accumulators Increases plant growth Increases antioxidant activity

�0.1% Al accumulators Resistance to herbivory Increases P availability

Decreases Fe toxicity

Co 10�6-0.001% non-accumulators Increases growth in legumes Essential co-factor for bacterial

nitrogenase

>0.1% Co accumulators Retardation of leaf senescence Inhibition of ethylene biosynthesis

Seed drought resistance

Resistance to herbivory

Na <0.05% non-halophytes Increases plant growth Regeneration of PEP

>0.25% in halophytes Essential for C4 in CAM plants

Can replace K as osmoregulator

Can facilitate nitrate uptake

Se �0.01% non -Se accumulators Increases plant growth Increases antioxidant activity

0.01% - 0.1% Se accumulators Resistance to pathogen Prevents P toxicity

�0.1% Se hyperaccumulators and herbivore attack Volatile Se deters herbivores,

accumulated Se is toxic

Si <0.5% most species Increases plant growth Strengthens cell walls

10–15% horsetails, commelinid

monocots

Resistance to pathogen and

herbivore attack

Activation or synthesis of

stress-related molecules

Resistance to abiotic stress

(heavy metals, salinity, drought,

UV radiation, extreme temperature)

SAR-like bioactivity

Regulation of metal transport

Increases antioxidant activity

Sodium exclusion from roots
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alleviated by silicon include salt, nutrient imbalance,

drought, high and low temperature, and UV radiation.

In particular, Si was recently proven to mitigate salinity

stress by enhancing sodium exclusion and decreasing

lipid membrane peroxidation through stimulation of

enzymatic and non-enzymatic antioxidant molecules

[54�].

In summary, Si has several well-established beneficial

effects on plants, and is even considered to be quasi-

essential for certain taxa, particularly grasses, sedges, and

horsetails. Si is accumulated to high levels, particularly in

cell walls, and promotes plant sturdiness and resistance to

a variety of biotic and abiotic stresses. While not essential,

Si is also considered a beneficial nutrient for animals, and

thus Si fertilization of crops may enhance their nutritional

value.

Conclusions and future prospects
Al, Co, Na, Se, and Si all have documented positive

effects on plant growth and stress resistance, and in some

cases the underlying mechanisms are known, as summar-

ized in Table 1. While none of these elements is essential

for all plants, Na and Si are essential for certain plant taxa,

and Al and Se have been suggested to be essential for

certain hyperaccumulator species. Co is essential for the

microbial partners of some plants, rather than for the

plants themselves. Even in taxa for which they are not

essential, these five elements can have a significant

beneficial effect on plant growth, and thus may be applied

as fertilizer.

The mechanisms behind the beneficial effects to the

plant are relatively underinvestigated, compared to the

toxic effects that many beneficial elements have at high

levels. The effects of beneficial elements at low levels

deserves more attention, not only because this will shed

more light on basic processes of plant nutrition but also

because fertilizing with beneficial nutrients may boost

crop production and affect plant nutritional value as feed

or food. Lack of nutritional value is one of the top ten

problems identified by the World Health Organization,

particularly in developing countries (the ‘hidden hun-

ger’). Dietary supplementation of Se, for instance, sig-

nificantly reduces the occurrence of cancer and male

infertility, as well as the susceptibility to viruses including

the AIDS-causing virus, HIV.

The roles of beneficial elements in plant ecological

processes may be another interesting area of continued

study. The effects of beneficial elements have so far often

been investigated in a laboratory setting using isolated

plants, which overlooks any beneficial effects on positive

or negative interactions of the plant with other species.

Another potential area of further study is the identifi-

cation and functional characterization of additional

beneficial elements. There are reports that other

elements than the ones discussed above may have

beneficial effects on plants, but more evidence is needed

to confirm these results [55]. These other potentially

beneficial elements include silver (Ag), cerium (Ce),

chromium (Cr), fluor (F), iodine (I), lanthanum (La),

rubidium (Rb), tin (Sn), serium (Sr), titanium (Ti),

vanadium (V), and tungsten (W). It is interesting to note

in this context that leaf elemental composition was sur-

veyed in over 670 species of terrestrial plants, and over

25% of the total variation could be assigned to the family

level and above for 21 of the 42 elements [16��]. Thus,

certain plant families preferentially take up particular

elements. If any of these elements are indeed confirmed

to be beneficial to plants, the cellular basis for the positive

effects of these elements will be an interesting area of

future study.
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