6 External and Internal Factors
Responsible for Midday Depression
of Photosynthesis

Da-Quan Xu and Yun-Kang Shen

Shanghai Institute of Flant Physiology, Chinese Academy of Sciences

NTS

MEOAUCHION. ...

he Phenomencn

'f Péttern of Diurnal Variation for Photosynthesis. ...

] . Midday Depression ol Pholosynthesis ...

soligical Factors Responsible for Midday Depression ..

L Sunlight
. Alr Temperature

C. Air HUumidity ..o

), Soil Water Status

. Carbon Dioxide Concentration in the Air.....

hysiological Factors Responsible for Midday Depression .o

. Stomatal Closure

‘Enhancement of Respiration and Photorespiration

. Inerease in Mesophyll Resislance .................

Decrease in Leal Water Potential
. Development Stage
+. Circadian Rhythm

lochemical Factors Responsible for Midday Depression

L Photosynthate Accumulation
, Decrease in Rubisco Activity

Enhanced ABA Biosynthesis ........................

Decline in Photosystem I Photochemical Efficiency

. Possible Mcchanisms
daptive Importance

L Adaptive Imporlance

. Measure of Alleviation
acluding Remrks

IRODUCTION

¢ depression of pholosynthesis  occurs in
plants and significantly affects crop yields,
was discovered at the beginning of the jast
L many studies have been carried out, and

hypotheses, such as feedback inhibition of

tathesis resulting from assimilate accumula-

tion, stomata closure, enzyme deactivation, and re-
versible decline in photochemical activity, have been
proposed to explain the phenomenon [1-4]. In recent
years, the nudday depression has been scrutinized by
modern techniques. However, its causal mechantsm is
still not establhished [4]. Based on available data, the
ecological, physiological, and biechemical factors re-
lated to the midday depression are analyzed and the
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lidday depression of photosynthesis occurs in
many plants and significantly affects crop yields.
fiice it was discovered at the beginning of the last
gntury, many studies have becn carried out, and

ditosynthesis resulting from assimilate accumula-

eral hypotheses, such as feedback inhibition of
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INTRODUCTION tion, stomata closure, enzyme deactivation, and re-

versible decline in photochemical activity, have been
proposed to explain the phenomenon [1-4]. In recent
years, the midday depression has been scrutinized by
modern techniques. However, its causal mechanism is
still not established [4]. Based on availabie dala, the
ecological, physiclogical, and biochemical factors re-
lated to the midday depression are analyzed and the
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possible mechanisms and adaptive importance are
discussed in this chapter.

. THE PHENOMENON

A.  Patreen of DHURNAL VARIATION FOR
PHOTOSYNTHESIS

Under natural conditions there are two lypical pat-
terns of phetosynthetic diurnal course [5]. One 1s one-
peaked, that 1s, net photesynthetic rate increases
gradually with the increase in sunlight intensity in
the morning, reaches its maximum arcund noon,
then decreases gradually with the decrease in sunlight
intensity in the afterncon. Another is two-peaked,
that is, there are two peak values of net photosyn-
thetic rate, one in late morning and the other in late
afterncon with a depression around noon, the so-
calied midday depression of phetosynthesis,
shown in Figure 16.1 (curves 1 and 2).

as

B. MiIDDAY DEPRESSION OF PHOTOSYNTHESIS

Midday depression of photosynthesis 1s a common
phenomenon. [l may occur in many species of plants
including C;, C4, and calmodulin {(CAM) plants
under a particular combination of environmental
condittons [6]. In plants that show rmidday depression,
however. it does not necessarily occur in all situ-
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FIGURE 16.1 Schemaiic diagram of dinrnal variation of net
photosynthetic rale in plant Jeaves. Curve 1, one-peaked
dinrnal course; curve 2, two-peaked diurnal curve; curve 3,
one-peaked diurnal course, but with severe midday depres-
slofn.
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ations. For example, in some plants midday depre-
sion occurs 1n summer but not 1 winter [7.8). In
addition, this phenomenon 1s remarkable only in (he
upper-layer leaves of cassava [9].

When the midday depression is serieus, no second
peak in the diurnal course of photosynthesis appears
[10]. The single-peaked curve of the diurnal course of
photosynthesis in such cases differs very 1much frem
those where the midday depression is absent. For U
former the peak value of net photosynthetic rate §
often in the morning (Figure 16.1, curve 3). bu
the peak value is at noon for the latter {Figure 16.1,
curve 1),

. ECOLOGICAL FACTORS RESPONSIBLE
FOR MIDDAY DEPRESSION
A. SuNLIGHT

In general, the two-peaked diurnal course of pholt
synthesis occurs on clear days with intense sunlight,
while the one-peaked diurnal course occurs on cloudy
days with weak sunlight [2,11], Naturaily, it is as
sumed that the nudday depression 1s caused by i
tense light. Nevertheless. it may occur at mediom
light of about 500 wmol photons/m%sec [12,13]. Ak
though intense light is not a necessary condition fof
midday depression to occur, in fact. intense sunlight &
the most important ecelogical factor for midday de
pression. In some cases. it may lead indirectly 1
midday depression through low humidity ard high
temperature because intense sunlight is the primary
driving force of diurpal variation in many enviroi:
mental conditions. In other cases, it may result it
midday depression through downregulation of phots
synthetic capacity caused by intense sunlight, &
observed in some woody plants [i4].

B. AR TEMPERATURE

Herppich et al. [13] reported Lhat Profea acawos, a
prostrate fynbos shrub. olter experiences very low dl
humidity at leal temperatures over 10°C higher than
mean atr temperature, and shows a pronounced mid:
day depression of gas exchange at the end of the dny
summer season, independent of water supply. How
cver, artificially lowered leaf temperatures in a gas
exchange cuvette can prevent this midday depression
almost completely under the same light conditions
Therefore, (hey considered that leal temperature, dir
ecily or via the vapor pressure deficit (VPD) between
leaf and air, rather than plant water status, 15 the
determinant of midday depression. Arcund noon.
high temperature can enhance CO, efflux from res
pirafien or photorespiration, causing a decline in nel
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motosynthetic rate Lo some extent. High temperature
dn alse lead to a decrease i activated Rubisco [16].
lish VPD can induce stomatal closure, limiting
Biotosynthetic CO; uptake due to decreased CO,
ailebility and exacerbating photoinhibition due to
wasive light energy, thereby Jeading to a decrease in
i photosynthetic rate.

Aig Humipity

Motosynthesis in many plants is highly sensitive to
thanges in air humidity, or, more precisely, VPD.
Dne-peaked diurnal course of photosynthesis could
e artificially induced by lugh air humidity even at
the end of the dry season when two-peaked patterns
ire common in natural weather [17]. Under low air
hwumidity the two-peaked diurnal course of photosyn-
hesis was observed in apricot even when soil water
Status was good [18]. Net photosynthetic rate in cas-
ava decreased rapidly as VPD increased [19]. In wheat
Usignificant negative correlation between net phote-
Aynthetic rate and air saturaiion deficit was observed.
Furthermore, increasing air humidity led to an in-
gredse in net photosynthetic rate and to disappearance
sl midday depression [20]. It was found in maize that
botl) high photon flux density and high air saturation
deficit were necessary for afternoon inhibition of
photosynthesis to appear [21]. The afternoon declines
n canopy COs-exchange rates found in a number of
Jpecies were associated with an increase in VPD [22]. Tt
Aas observed that enhanced air humidity increased not
unly net photosynthetic rate but also the optimal tem-
peratnre of photosynthesis in wheat leaves [23). The
pnstomatal mechanism by which air humidity affects
photosynthesis is not clear [24].

Due to its effect on VPD, influence of temperature
s often closely linked to air humidity impact on the
ditirnal course. Raschke and Resemann [13] demon-
strated the dominant role of humidity in the induction
ol midday depression 10 Arbutis unedo leaves. The
depression occurred at a constant leaf temperature in
their experiment when a thresheld in VPD was
exceeded, but the depressions were hardly noticeable
when VPD was held constant and leal temperature
was allowed to vary within a certdin range.

Low air humidity has been considered an import-
ant scological factor responsible for the midday de-
pression [13,25--30].

D. Soit WaTer STAaTUS

Among environmental factors, soil water status seems
10 be a decisive factor in midday depression of photo-
svnthesis. For instance, with a dechne in soil water
potential, a one-peaked diurnal course of photosyn-
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thesis in soybean leaves became two-peaked, and mid-
day depression became more severe [31]. After heavy
rain, midday depression disappeared almost com-
pletely in wheat leaves on the following day [32] Leaf
water potential at dawn is a reflection of soil water
status. As the leal water potential at dawn declined, the
pattern of the diurnal course ol photosynthesis in soy-
bean leaves changed from one-peaked to two-peaked,
and the midday depression gradually became severe
[33]. In addition, 1t was observed that midday depres-
sion of photosynthesis occurred in pot-grown, but not
m field-grown, wheat under the same aboveground
conditions {D.-Q. Xu et al., unpublished data). This
difference was also reported hetween field-grown and
pot-grown soybean plants [34]. Of course, the effect of
seil water status on leaf photosynthesis is indirect.
Many studies have suggested that under drought con-
ditions stomatal closure often plays the mam role in
the decline in leaf photesynthesis, that is, photosyn-
thetic biochenustry and photochemistry are not
impaired by the lack of water [33].

E. CargonN DioxiDe CONCENTRATION IN THE AIR

Midday depression of photosynthesis is often accom-
panied by decreased air CQ; concentration around
noon. Some researchers consider the decreased CO,
coneentration as an important ecological factor lead-
ing to midday depression (36]. However, according to
Xu et al. [20], the extent of the decline in CO, con-
centration did not match the extent of the midday
depression. Moreover, the air CO, concentration did
nol increase when the second peak of net photosyn-
thetic rate in the daily course appeared, indicating
that the diurnal variation pattern in net photosyn-
thetic rate is not dependent on the air CO; concen-
tration. The midday depression in Quercus suber
persisted even at a CO, partial pressure of 250Pa
[37]. Tt appears that decreased air CO, concentration
arcund noon is nel an important ecological faclor for
midday depression.

IV. PHYSIOLOGICAL FACTORS
RESPONSIBLE FOR MIDDAY
DEPRESSION

A.  Stomatar CLOSURE

In some plants midday closure of stomata occurs
[5,38], and it is often coincident with midday depres-
sion of photosynthesis {13,18,20]. However, whether
the midday closure of stomata 1s the cause of midday
depression of photosynthesis cannot be established
only on the basis of a change in stomatal conduct-
ance. According to Farquhar and Sharkey [39],
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stomatal closure can be considered an umportant
cause of decline in photosynthelic rate only when
the intercellular space CO» partial pressure () also
decreases.

A decreased C, was observed when nudday de-
pressions in net photosynthetic rate and stomatal
conductance occurred in bamboo [14,40], wheat [41],
soybean [42,43], Ginkgo biloba [44], and strawberry
[43]. These reports indicate that stomatal partial clos-
ure 18 indeed responsible (or midday depression of
photlosynthesis.

Although among the 37 cases of midday depres-
sion nvestigated, 19 were accompanied by a reduc-
tion in C, of | to 3Pa, Raschke and Resemann [13]
concluded that the nidday depression ol photosyn-
thesis in leaves of 4. wnedo was not caused by stoma-
tal closure. However, it 13 not clear whether
nonuniform stomatal closure occurs in their experi-
ments. Due 1o the patchy closure of stomata under
stress conditions [46—48], overestimated C, may lead
to the misinterpretation that the reduction in photo-
synthesis caused by stomatal closure results from
nonstomatal lfactors.

In general, C, is calculated lrom leaf gas exchange
data according to the equation C, = C, — A/G,,
where C, and ; are the partial pressures of CO5 in
the air and inside the leaf, and A4 and (. are net
photosynthetic rate and stomatal conductance to dif-
fusion of CO+, respectively [39]. From this equation, it
is very clear that €, decreases rarely in proportion to
the decrease in 4 when A4 and . decrease simultan-
eously. In fact, during midday depression the magni-
tude of €| decrease is often much less than that of the
decrease in net photosynlhetic rate, For instance, com-
pared with the value of the first peak, net photosyn-
thetic rate in wheat leaves decreased by about 48%
during midday depression, while , decreased by
only 1 1%, although an analysis showed that stomatal
closure was the most imporiant physiological cause of
midday depression [41]. It is likely that an increased
CO, efflux [rom respiration or photorespiration is
responsible for the difference in the extent of decline
between 4 and ¢ because the CO; elflux leads to a
decrease in 4 and an increase in C,. Therefore, stoma-
tal limitation of photosynthesis during midday depres-
sion cannot be precluded based only on the lact that
the exlent of C, decline is less than that of the decline in
net photesynthetic rate. Furthermore, when A and G,
evidently decline in a coordinated way, namely, the
plot of 4 against G, 1s linear, or patchy closure of
stomata occurs, calculated C, from the equation 1s
unchanged because A/G. is constant, but actually €
1s changed. Thus, such an apparently constant C, is
likely to mask the fact of stomatal limitation, forming
an artifact of nonstomatal limitation of photosyn-
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thesis. [n other words, only when C, increases can
one confidently say that the decline in net photosyn-
thetic rate results from a nonstomatal factor.

B. ENHANCEMENT OF RESPIRATION AND
PHOTORESPIRATION

There i1s evidence that a rise in respiration or phelo-
respiration near nooh is one ol Lhe physiological
causes of midday depression. Thus, in the leaves of
Q. suber a substantial increase 1 the CO, compensa-
uon point has been observed during midday depres-
sion of photosvnthesis [37], implying that respiration
and photorespiration are enhanced by the higher leaf
temperature around noon. In satsuma mandarin (Cit-
rus unshiv Marce) midday depression ol both net
photosynthetic rate and apparent phatosynthetic
quantum efficiency has been attributed to increased
photerespiration around noon [49]. The increased
photorespiration may be a response to high hght o
the decline in €, due Lo midday closure of stomata,

C.  INCREASE IN MESOPHYLL RESISTANCE

Mesophyll resistance to CO5 diffusion should be con-
sidered when one explores lurther the physiological
causes of midday depression. In soybean leaves botl
stomatal resislance and mesophyll resistance
creased during the midday depression of photosyis
thesis [33]. Mesophyll resistance seems to play a mort
unporlant role in some coniters [2].

. Decrease iNn Lear WaTeErR POTENTIAL

As a consequence of the larger evaporative demand
near noon, there is usually a midday depression af
Jeal’ water potential. The diurnal course of chang:’
n leal water potential similar to that of photosynthesis
was observed in some conilers [2]. In some experiments |
with Helianfhus annuus, however, no unique relation-
ship among stomatal conductance, photosynthelic
rate. and leaf water potential was observed. but stoma-
tal conductance and net photosynthetic rate decreased
when about two thirds of the extractable water in il
soll had been used irrespective of the leaf water polen
iial. Therefore, it was suggested that soil water stalus
not leal water status, affected the stomatal behavias
and photosynthesis of H. aamaes [50].

E. DEeVELOPMENT STAGE

Guo et al. [21] reported that under high temperatui
and low humidity midday dcpression of photosyi
thesis could occur in spring, summer, and awlum,
and it occurred easily al the grain-filling stage in fighl
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pin and pot-grown soybean plants. 1t is not clear,
iever, why midday depression occurs easily at this
2. There is a possibility that at this slage a par-
wlir microclimate around soybean plants or a com-
alion of light, temperature, and water factors,
s easily to midday depression.

L Circapian RHYTHM

By studies have shown that midday depression is
il related to circadian rhythm. Under simulated
bhitat conditions in a growth chamber, increasing
r"pheric stress in the form of higher tcmperature
it lower humidity resulied in mudday depression of
anipiration rate and net photosynthetic rate of the
aves in Arbudus unedo and Quercus flex due Lo mid-
Wy stomatal closure, while midday depression did
il occur when the atmospheric stress was absent.
hise experiments were carried out under the same
t conditions on four consecutive days [38]. 1t was
unonstrated by experiments in which only one en-
gronnental variable changed at a tume while all
lhers were held constant thal a circadian component
s not essential for the development of nudday de-
Wession in A, unedo L. [13]. Obviously, the fluctu-
lon in atmospheric conditions rather than circadian
Wihin is responsible for midday depression.
Under constant conditions net photosynthetic
¢ in peanut {Arachis hypogaea) leaf displayed a
lithm change within a period of about 24 hr, but
Bvalley value or depression was at midnight not at
midday [52]. Gao et al. [53] reported that under rela-
lhely constant conditions of light, temperature, hu-
iy, and CO» concentration, net photosynthetic
and stomatal conductance were lower n the
ming and alternoon, and higher arcund noon,
dcaling a periodic change, namely circadian
fiilhm. Nevertheless, the periodic change is not re-
el to midday depression of photosynthesis ab-
eried in rthe field. Their experiments showed that
Builday depression of photlosvnthesis was negligible
dller sovbean plants were transferred to relatively
wonstant conditions from field conditions where they
iften displayed a remarkable midday depression. This
iet indicates that under natural conditions the envir-
uimental factors rather than circadian rhythm are the
Aterminants for the daily pattern of photosynthesis.
There 1s another view on the relationship between
idday depression and circadian rhythm. On the basis
ola remarkable midday depression of photosynthesis
In rice plant abserved under constant light and tem-
Jeriture conditions, Deng and Chen [54] concluded
' tmidday depression is related to circadian rhythm.
However, il is not clear whether air humidity arcund
plants was constant during their observation.
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V. BIOCHEMICAL FACTORS RESPONSIBLE
FOR MIDDAY DEPRESSION

A. PHOTOSYNTHATE ACCUMULATION

In 1868 Boussingault [35] first proposed a hypothesis
that the accumulation of assimilales in an illuminated
leal might result in a reduction in net photosynthetic
rate. Some investigators are in favor of the hypothesis
and consider the pholosynthate accumulation to be an
important cause of the midday depression of photo-
svnthesis [56]. Nevertheless, some studies have indi-
cated that photosyninale accumulation has no
negative effect on photosynthesis under normal con-
ditions without environmental stress or block of as-
similate export from leaves [12,57]. Moreover, it has
been cbserved that the photesynthate content in wheat
leaves is nol higher during midday depression than in
the morning when photosynthesis is actively going on.
Net photosynthetic rate in wheal leaves decreased by
less than 10% even when photosynthate contents were
much higher than the control after blocking of photo-
synthate export from the leaves for 6 hr by heat gird-
ling of the leaf sheath [20]. Undoubtedly, the effect
should be even less when photosynthate export 1s nor-
mal, Therefore, photosynthate accumulation is not a
likely cause of midday depression.

B. Detcreast in RuBisco Acrivity

Rubisco is a key enzyme in pholosynthetic carbon
assim:lation. It often limits the maximal net photosyn-
thetic rate [58-60]. However, there 15 a great deal of
evidence indicating that plants may contain excess
Rubisco and that photosynthesis may be controlled
by several enzymes or processes [61]. Perhaps, the ac-
tivated amount rather than the total amount of
Rubisco often limits the maximal photosynthesis. In
consonance with this supposition, a soybean cultivar
with a higher net pholosynthetic rate had a higher
carboxylation elficiency and higher nitial activity of
RuBP carboxylation of Rubisco [62]. Tn addition,
undecr unfavorable conditions net photosynthetic rale
may be maintained by a grealer concentration of
Rubisco [03]. A midday decline in carboxylation effi-
clency, namely, the initial slope of the 4-C curve,
assoclated with midday depression of photosynthesis
has been observed in Q. suber leaves [37,64]. Further-
more, Jiang el al. [65] reported that midday depression
of net photosynthetic rate was accompanied by a mid-
day decline of Rubisco initial activity in rice flag leaves.
Ttseems that nidday depression is related to a decrease
in Rubisce activity or content of activated Rubisco.
However, one cannot be sure whether the decreased
Rubisco activity is the main reason for midday
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depression of photosynthesis because of the lack of
dala on diurnal variation in stematal conductance
and intercellular CO; concentration measured simul-
taneously.

C. EnHancep ABA BIOSYNTHESIS

There 1s a possibility that abscisic acid {ABA) is an
important biochemical factor responsible for midday
depression. In the daily course of ABA content
change, a midday peak associated with midday sto-
malal closure was observed in grape (Vitis vinifera)
leaves [66]. Unfortunately, the diurnal variation in net
phatosynthetic rate was not measured simultaneously
in this study. Thus, the relationship between ABA
and midday depression of photosynthesis is still an
open question.

D. Decune IN PHOTOSYSTEM I PHOTOCHEMICAL
EFFicIENCY

On clear days the midday decline in photosynthetic
elficiency, expressed in apparent quantum yield of
CO; uptake or chlorophyll fluorescence parameter £,/
Fn, a measure of phostosystem 11 (PS 11) photochemn-
ical efficiency. oflen cccurs in plants [67-70]. Natur-
ally, the queslion arises whelher the inidday depression
of net photosynthetic rate often observed results from
the midday decline in photosynthetic etficiency.

Demmig-Adams et al. [3] observed that the mid-
day depressions of net photosynthetic rate and sto-
matal conduclance were accompanied by decreases in
FJF, and apparent quantum yield of O, evolution in
A. unedo leaves. However, they were not sure whether
this reduction in photochemical efficiency 1s serious
enough to limit CO- fixalion in high light and thereby
to impose a nonsiomatal limitation to net CO» uptake
in A. unedo in the field at noon.

It should be pointed outl that midday depression
of the photosynthetic rate is always observed at sat-
wrating light, while the photosynthetic quantum effi-
ciency 1s often measured at low light intensity.
Therefore, decreased efficiency does not necessarily
lead to a decrease in hght-saturated rate because
strong sunlight may compeusate for the decline in
PS 11 efficiency to mainiain the high rate (0 some
extent. The light-salurated rate of photosynthesis
began to decrease when photoinhibition reached a
level of 40% to 60%, and at a lower inhibition level
the efficiency, but not the light-saturated O, produc-
tion, was affected [71,72]. In wheat flag leaves a mid-
day decline in photosynthetic efficiency was not
invariably accompanied by midday depression of net
photosynthetic rate, Intercellular CO, concentration
decreased when midday depression of both the effi-
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ciency and the rate occurred simultaneously. Furthes
more, photosynthetic rate  was  correlated wilh
stomatal conductance and intercellular CO; coneen
tration to a higher level of significance than witl
photosynthetic efficiency. These facts indicate that
midday decline of photosynthetic efficiency may b
if at all, a less important cause of midday depressidl
of nel photosynthetic rate than midday closure of
stomata in the case studied [41].

Some woody plants require a lower light intensity
{a photon flux density not more than one hall of ful
sunhght) to saturate photosynthesis. Thus, in thes
plants severe photoinhibition, characterized by a de
crease in the quantum efficiency of pholosynthetis
carbon assimilation and a decline in PS II phate
chemical efficiency caused by excessive light energhy
often occurs around noon on clear days. For st
plants the maim immediate cause of midday deprs
sion may be the decline in PS Il photochemical el
clency induced by streng sunhight. In summe
midday depression of both the efficiency and (he
rate often occurred in the upper leaves of the bambal
canopy, while intercellular CO, concentration i
clined first, and then increased. These facts indicale
that midday depression of net phetosynthetic rate i
related to decline in photochemical efficiency, al leas
in part [14]. Similarly, midday depression of ng
photosynthetic rate was accompanmed by a pal
nounced decrease in leaf conductance and a substiss
tial increase in intercellular CO, concentration, db
well as a considerable decline in PS II photochemieal
efficiency (F./f5,) in P acaulos [13]. Midday depres
sion in tea { Camellia sinensis) [11] and grapevine { Fis
tis winiferay [73] leaves has been attributed
photoinhibition. Results from other studies als
show that photoinhibition may be a factor contributs
ing to midday depression of photosynthesis [4.74].

As mentioned above, midday depression af 1
photosynthetic rate is closely refated to many facio
such as stomatal partial closure, decreased Rubi
activity, and declined PS 11 photochemical efficiengs
Then, which of them, stomatal or nonstomatal [achis
1 the main cause of midday depression when [
factors exist simultansously? The data of changeu
intercellular CO, concentration () during midd
depression may help to answer this question. lu g
cral, stomatal partial closure or a decrease in stoni
conductance may lead to a decreased C, whereas U
decline in photosynthetic activity of leaf mesoph'
cells such as a decrease m Rubisco carboxylais
activity or PS II photochemical efficiency may ind _
an tncrease in C. The direction, increase or decriis
of change in C, depends on the predominant o
when changes in these factors occur simultaneolsy
When the decreases in  stomatal conduclia




iy Depression of Photosynthesis

bisco activity, and PS I1 photochemical efficiency
ot simultaneously during midday depression, for
ample, if € declines, the main cause of midday
ipession is the decreased stomatal conductance.
Ui the contrary, il C, increases, the main cause must
bihe decreases in Rubisco activity and PS 11 photo-
lemical efficiency. In this case, the direction rather
i the extent of change in C, is important for mak-
2 the conclusion [75].

L PossiBLE MECHANISMS

er potential may be the main environmental fac-
ers, decreased stomatal conductance may be the
nost important physiological factor, and increased

iency may be the most important biochemical
Bcinrs. Of course, these factors are ¢losely linked to
ach olher. Strong sunlight causes an increase in air
perature and a decrease in air relative humidity
soil water polential because of enhanced plant
Uspiration. These changes in ecological faclors re-

GURE 16.2 Possible relationships between ecological,
phvsiological, and biochemical factors and nidday depres-
son. SR, solar radiation: Ta. air temperawure;, Ca, CO; con-
itration in the au; RH. relative humidity: VPD, water vapor
pressure deficit from leaf cell to air: Ws, soil water potential;
 lranspiration; Wi, leal water potential; Rpd. photore-
spitition and respiration; Rim, wmesophyll resistance to CO;
dillusion; Ci, CO- concentration in intercellular space; PE.
phitochemical efficiency; ABA, abscisic acid; A. net photo-
syuthetic rate. 4" and =" indicate increase and decrease,
depectively. Double-line arrow indicates a strong effect.
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sult in variations in the physiological and biochemical
factors. Low soil water potential leads to increase in
ABA synthesis, and both increased ABA and in-
creased VPD cause a decrease in stomatal conduct-
ance, resulting in a decline in net photosynthetic rate
due to decreased CO, supply. However, midday clos-
ure of stomata is not the sole important physiclogical
or biochemical cause of midday depression. In some
woody plants such as bamboo and tea, the decline in
PS 1l photochemical efficiency induced by strong sun-
light may be the most important biochemical cause of
midday depression. Perhaps the main immediate
cause and mechanism of midday depression are dif-
ferent for different plant species under various condi-
tions. The factors related to midday depression are
shown in Figure 16.2 [76,77].

Vi. ADAPTIVE IMPORTAMNCE
A, ADAPTIVE IMPORTANCE

In many cases midday depression of photosynthesis
seems (o be a strategy to cope with environmental
stresses formed during evolution. Midday stomatal
closure and downregulation of photochemical effi-
ciency are effective ways to avold excess water loss
and photodamage of the photosynthetic apparatus
under strong sunlight and dry conditions.

Midday stomatal clesure may be a response to low
atr hunidity or high VPD. In this case midday closure
of stomala 15 an important physiological cause of
midday depression of photosynthesis. Alternately,
midday ¢losure of stomata may be a response to -
creased intercellular space CO5 concentration due Lo a
decline in mesophyll photosynthetic activity or in-
crease in respiration and photorespiration. In this
case midday closure of stomata is the result rather
than the cause of decreased photosynthetic rate. In
any case, midday stomatal closure always increases
the water use efficiency of planis [78-80]. This is be-
cause of the predominant cccurrence of leaf gas ex-
change in the morning and in the afternoon when net
photosynthetic rate is higher and transpiration rate is
lower. Obviously, such stomatal regulation is quick,
reversible, and favorable for growth and development
of plants under dry conditions of air and soil.

Downregulation of photochemical efficiency
around noon is often observed in many plants under
ficld conditions on clear days [69,81]. In some cases 1t
may be responsible for the midday depression, for
example, in the leaves of some woody plants such as
hambeoo and tea. Such downregulation may be due to
enhanced thermal energy dissipation related to the
xanthophyll cycle or the reversible inactivation of PS
I, which is considered to be an important mechanism
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to protect the photosynthetic apparatus from photo-
damage [82-84]. Although there have been many
studies. the molecular mechanism of such thermal
energy dissipation is not yet clear [85-87].

B. MEASURE OF ALLEVIATION

Midday depression of phoiesynthesis, as a regulation
process, is advantageous for the survival of plants
under stress conditions, but it is at the expense of
effective use of light energy and plant productivity.
Midday depression may decrease crop productivity
by 30% Lo 509% or more. Therefore, 1t 13 worthwhile
to search for alleviating or eliminating measures.
Under strong-light and high-transpiration conditions,
midday mist irrigation could increase stomatal con-
duclance and pholosynlhetic rate in leaves of Bera
vulgaris despite adequate soil waler supply [88]. Mist
irrigation (or 40 days not only increased the photo-
synthetic rate m cassava lcaves but also increased
production of dry roots (91%) and total biomass
(27%:) [89). Similar effects of mist irrigation were ob-
served in wheat and sovbean plants. Mist irnigatien in
the grain-fAiling period increased stomatal conduct-
ance and net photosynthetic rate in flag leaves, thus
increasing grain yield by about 18% in wheat [32].
Mist wrigation in the seed-filling period increased
(he seed vield by about 19% in soybean [10].

VIl. CONCLUDING REMARKS

Midday depressicn of photosynthesis is a cormmon
phencmencn in higher plants. 1t is related to many
external and internal factors interacting with each
other. Midday stomatal closure or decreased photo-
chemical efficiency may cause the midday depression,
depending on plant species and environmental condi-
tions. 1t may be a strategy of plants to cope with
environmental stresses. Further study on the mechan-
1isms of midday depression is required For understand-
ing the regulation of photosynthesis and finding ways
to increase plant productivity. Because the present
viewpoints and hypotheses about these mechanisms
are based on Inadequate or incomplete data, in the
following studies a better combination of many kinds
of experimental methods, such as physiclogical, bio-
chemical, and biophysical ones, is absolutely neces-
sary for getting more abundant data (o reveal exaclly
these mechanisms.
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