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The spectral global quantum yield (Yy, electrons/photons absorbed) of photosystem II (PSII) was measured
in sunflower leaves in State 1 using monochromatic light. The global quantum yield of PSI (Y;) was mea-
sured using low-intensity monochromatic light flashes and the associated transmittance change at
810 nm. The 810-nm signal change was calibrated based on the number of electrons generated by PSII during
the flash (4 - O, evolution) which arrived at the PSI donor side after a delay of 2 ms. The intrinsic quantum
yield of PSI (yj, electrons per photon absorbed by PSI) was measured at 712 nm, where photon absorption by
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Le;,\xs PSII was small. The results were used to resolve the individual spectra of the excitation partitioning coefficients
Photosystems between PSI (a;) and PSII (ay) in leaves. For comparison, pigment-protein complexes for PSII and PSI were iso-

lated, separated by sucrose density ultracentrifugation, and their optical density was measured. A good correla-
tion was obtained for the spectral excitation partitioning coefficients measured by these different methods. The
intrinsic yield of PSI was high (y; = 0.88), but it absorbed only about 1/3 of quanta; consequently, about 2/3 of
quanta were absorbed by PSII, but processed with the low intrinsic yield y;; = 0.63. In PSII, the quantum yield of
charge separation was 0.89 as detected by variable fluorescence F,/Fy,,, but 29% of separated charges recombined
(Laisk A, Eichelmann H and Oja V, Photosynth. Res. 113, 145-155). At wavelengths less than 580 nm about 30% of
excitation is absorbed by pigments poorly connected to either photosystem, most likely carotenoids bound in
pigment-protein complexes.
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1. Introduction

In oxygenic photosynthesis the two photosystems (PSII and PSI)
operate in series during the transport of electrons from H,O to CO,. This
implies a serious constraint on the antenna systems serving these photo-
systems, since turnover by the two photosystems must be equal in the
white light that the photosynthetic system is adapted to utilize (more de-
tails in Discussion). This would not be a problem if the quantum efficiency
of electron transport and pigment composition of the antennae were
equal in both photosystems. Recent advances in molecular analysis of
the photosynthetic antenna systems have revealed the numbers of Chls
bound with different pigment-protein complexes (Table 1). For example,
assuming a typical PSII dimer composition of C,S,M, (two cores, two

Abbreviations: A/D, analog-to-digital converter; Car, carotenoids; Chl, chlorophyll;
ETR, electron transport rate; FRL, far-red light; GL, green light (540 nm); LED, light-
emitting diode; LHCI, LHCII, light-harvesting complexes of PSI and PSII; PAD, PFD, photon
flux density, absorbed and incident; PC, plastocyanin; PQ(H,), plastoquinone (reduced);
PSI, PSII, photosystems I and II; P700, donor pigment of PSI; STF, single turnover flash;
WOC, water-oxidizing complex; Yy, Y;, global quantum yield of the photosystem with re-
spect to all quanta absorbed by the leaf; yy, y;, intrinsic quantum yield of the photosystem
with respect to quanta absorbed by the particular photosystem
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strongly and two medium bound LHC) and taking monomer density
(¥4C,S,M,) of 1.2 umol m~2 and PSI density of 1 umol m™2, then there
are 173 umol Chl m~2 associated with monomeric PSI and 175 with mo-
nomeric PSII, resulting in the ratio of excitation partitioning between PSII
and PSI, ay/a; = 1.01. In case of an extremely large PSII antenna, includ-
ing two loosely bound LHCII per dimer (C,S,M;,L;) and the same center
densities 1.2 and 1 umol m™?2, then there are 173 umol Chl m™? associ-
ated with PSI and 226 with PSII, resulting in ay/a; = 1.3.

Based on these analytically measured antenna sizes per PSII and PSI
monomer, excitation partitioning between the photosystems is propor-
tional to the ratio of the densities of photosystems. The latter generally
indicates the dominance of PSII, varying from 2.5/1 to 1.2/1 depending
on growth light quality in pea [1,2]. Based on excitation spectra of
low-temperature PSI fluorescence, excitation partitioning to PSI was
estimated to be only 0.3 in bean leaves over the visible range, with
peaks approaching 0.5 at some wavelengths [3], indicating significant
over-excitation of PSII in relation to PSL Recently the excitation balance
of the two photosystems was explored in relation to the quantum yield
of CO, fixation in cucumber leaves grown under the sunlight spectrum
or under shade light (preferentially exciting PSI) or blue light (preferen-
tially exciting PSII) [17]. The relative excitation capture rates of the two
photosystems, PSII/(PSI + PSII), calculated in vivo from Chl fluorescence
and leaf transmittance signals at 810 nm, were strongly proportional to
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Table 1
Pigment content in subcomplexes of PSI and PSII [4-16].

Chla Chlb  Chl(a+b) b-Car Lut Neo  Viol
PSI core 106 106 5
PSI gap 35 25 6
Lhca(1/4) 228 7.2 30 1 2.7 13
Lhca(2/3) 24.7 6.3 31 15 25 1
PSI composition
LHCI 51 16 67 2.5 52 23
PSI-LHCI 157 16 173 7.5 52 23
PSI-LHCI-LHCII 181 34 215 7.5 112 3 53
PSII core 35 35 11
Lhcb1...3 8 6 14 2 1 1
Lhcb4 (CP29) 6 2 8 1 1 1
Lhcb5 (CP26) 6 3 9 1 1 1
Lhcb6 (CP24) 5 5 10 1 1
PSII composition
LHCII (SM,L) 24 18 42 6 3 3
G 70 70 22
S, 142 46 188 22 16 10 10
GSoM, 200 92 292 22 30 16 18
CSoMyL, 248 128 376 22 42 22 24

the same ratio calculated from in vitro antenna size and photosystem
density values, but the proportionality constant was about 1.3 in favor
of the in vitro data.

If there are problems with balancing the two photosystems, the con-
dition should be reflected in the action spectrum of photosynthesis [18].
The first report of unbalanced stimulation of PSI and PSII was the Emer-
son enhancement effect, when addition of short wavelength (PSII) light
synergistically enhanced the quantum yield of photosynthesis under far
red (PSI) light [19]. Subsequent measurements revealed a characteristic
drop in photosynthetic quantum yield at 450-500 nm [20-22], sug-
gested to be caused by over-excitation of PSII relative to PSI due to ab-
sorption by Chl b [23]. Instead of the physical spillover [24], in plants
the partitioning of excitation is regulated toward an optimum by the
“state transition” mechanism, which is the ability to redistribute LHCII
between PSII and PSI depending on excitation spectral composition
[2,25,26]. Thus, though the total numbers of Chls are closely similar
per photosystem and the most striking difference between PSII and
PSI is in terms of the Chl a/b ratio and carotenoid content, in leaves
the number of trimeric LHCII may be variable dependent on growth
conditions, leaving the actual antenna sizes of PSII and PSI, as well as
the excitation partitioning ratio, open.

In this work we revisit the problem of photosystem excitation
balancing, making use of recent advances in optical and O, evolution
measurements on leaves. We report the action spectra of PSIl and PSI sep-
arately in terms of the global yield (with respect to all absorbed quanta)
and analyze the intrinsic quantum yields (with respect to quanta exciting
the particular photosystem) and excitation partitioning between the
photosystems. In the blue part of the spectrum both photosystems are
screened by pigments whose spectrum is similar to that of carotenoids.
In accordance with the early results with Chroococcus and Chlorella [27]
and with cucumber leaves [17,20] this shows that excitation is not trans-
ferred efficiently from all carotenoids to Chl in leaves.

2. Materials and methods
2.1. Plant material

Sunflower (Helianthus annuus L.) plants were grown in 4-1 pots
in nutrient-enriched soil in a growth chamber (AR-95HIL, Percival,
from CLF Plant Climatics GmbH, Emersacker, Germany) at a PFD of
450 umol quanta m~2 s~ !, 14/10 h day/night cycle, 25/20 C tempera-
ture, and 70% relative humidity. Fully expanded, attached leaves of 3 to
4 week-old plants were used in experiments. Leaves of Betula pendula,
Ulmus glabra and Aegopodium podagraria were collected from plants
growing outdoors and, with petioles in water, used in experiments.

2.2. Leaf chamber and illumination

A laboratory-made two-channel leaf gas exchange measurement
system (Fast-Est Instruments, Tartu, Estonia) enabled control of CO5,
H,0 and O, pressures and measurement of O, evolution and transpira-
tion. The leaf was enclosed in a 32-mm diameter by 3-mm deep cham-
ber and flushed with gas at a flow rate of 0.5 mmol s . To stabilize leaf
temperature and immobilize the leaf for optical measurements, the
upper epidermis was sealed with starch paste to a glass window in
contact with a water jacket. Gas exchange occurred through the lower
epidermis. The leaf temperature was always within 0.2 °C of the water
jacket temperature (22 °C).

The leaf chamber was illuminated via a branched fiber-optic
light guide. Plastic fibers (1 mm, Toray Polymer Optical Fiber, PF
series, from Laser Components, Grobenzell/Miinchen, Germany)
were individually arranged to produce uniform illumination of the
chamber-enclosed adaxial leaf surface from three superimposed
light sources. In this work one branch was used for FR illumination
(LED 720-66-16100, Roithner Lasertechnik GmbH) and the second
branch for additional green light (OD-520 L, Opto Diode Corp.). The
third branch was connected to a STF source (Machine Vision Strobe
MVS-7020, EG&G Optoelectronics, Salem, MA) or, alternatively, to a
white LED (Enfis UNO Array 5 x 5 neutral white 4000-4500 K)
equipped with selected interference filters (when the absolute quan-
tum yield of PSII was measured).

The quantum yield of PSI was measured with non-saturating single-
turnover flashes (STF) generated by the Xe source via interference filters
(10 nm band-width at half-height, ThorLabs, Newton, NJ). Quantum en-
ergy input, either integrated over time for flashes (umol photons m~2)
or as quantum flux rate of filtered white LED light (monochromatic,
umol photons m~2 s 1), was measured by a Miniature Fiber Optic Spec-
trophotometer PC 2000 (Ocean Optics, Dunedin, FL), spectrally calibrated
against a 1000 W FEL type etalon lamp, model 63350 serial No. 7-1074,
according to manufacturer's instructions. Photon absorption by the leaf
during a flash (umol m™2) was calculated by multiplication of the filtered
flash emission spectrum for leaf absorptance spectrum. The actual spec-
trum of the “monochromatic light” was calculated as the product of the
emission spectrum of the light source and the transmission spectrum of
each filter. At some wavelengths this significantly shifted the effective
midpoint of the band.

2.3. Measurement of light absorption in the leaf

Leaf absorptance was measured with the PC 2000 using a leaf disk
placed in an integrating sphere and illuminated by white light from a
halogen source. The integrating sphere was home-made, internal sur-
face of 8.5 cm diameter was made of compressed white Teflon powder.
In the center of the sphere there were an object and reference holder
side by side—a white horizontal metal sheet with two holes of 13 mm
diameter. Light was guided into the sphere from the bottom by a single
fiber, arranged so that most of the light cone passed through the object
hole. Two pairs of recordings were made for one measurement. The
fraction of stray light not illuminating the sample was measured, first,
placing a black object on the sample holder and leaving the neighbor
reference holder empty (reading Ry) and, second, leaving the sample
holder empty and placing the black body on the reference holder (Ry).
The fraction of stray light, Tyjack = Ry / Ry was about 0.04. With leaf
samples, first, a 15 mm leaf disk was placed on the sample holder and
another, 15 mm white Teflon disk on the reference holder (R3), and
then the places of the leaf and Teflon disk were exchanged (R,). The cor-
responding leaf scattering signal Tear = R3 / R4. Leaf absorptance (A)
was calculated as

_ 1— Tleaf

1Ty
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Along with photosynthetically active pigments, a small part of
radiation was absorbed in cell walls and other non-pigment structures.
We assumed that at 800 nm all absorption was non-photosynthetical
and spectrally constant. Therefore, absorptance in photosynthetic pig-
ments (Ap) was found as

AP:A{l—M} (2)

In(1-A)

where parameters A and Tin Eqs. (1) and (2) are wavelength dependent
over the spectrum.

2.4. Measurement of PSI fluorescence

Non-variable fluorescence of PS], typically 0.37F, in the long-wave
spectral window of 750 + 20 nm, was calculated as the invariable
part of Fy fluorescence present in the long-wave window, but absent
in the short-wave window of 680 & 10 nm. In overnight dark-
adapted leaves fluorescence was measured in the two wavelength
windows in the Fy and Fy, states. The 750 nm signal was plotted vs.
the 680 nm signal, a straight line was drawn through the two measured
points and extrapolated to zero of the 680 nm signal. The obtained off-
set at 750 nm was considered to be PSI fluorescence [48,49].

2.5. 0, evolution measurements

Oxygen evolution was measured in the flow-through gas exchange
measurement system with a calcium-stabilized zirconium O, analyzer
(S-3A, Ametek, Pittsburgh, PA, USA) on a background of 80 ppm O, in
N, and 200 ppm CO,. The analyzer was calibrated against the atmo-
spheric O, concentration. The calibration has been confirmed by the
ratio of 0,/CO; fluxes of 1.0055 during photosynthesis in high light
[28]. Due to the small volume of the leaf chamber and tubing, the half-
response time of the system was only 0.6 s [29]. For steady-state mea-
surements the reference (zero) was recorded after darkening the leaf.
Respiratory O, consumption was strongly suppressed due to the low
ambient O, concentration [30]. Density of PSII centers was measured
as 4 - O, evolution generated by an individual saturating STF [57].

2.6. 810 nm transmittance measurements

Leaf transmittance at 810 nm was measured with a laboratory-
made modulated spectrophotometer [31]. A 810-nm LED (Type
ELD 810-525, Roithner Lasertechnique, Vienna, Austria), filtered by a
40-nm band-pass interference filter (FB 800-40, ThorLabs), is driven
by rectangular pulses of 5.5 ps at 90 kHz by a quartz-stabilized genera-
tor. The beam is applied to a 2-cm? sub-area of the leaf surface. A fiber
bundle collects transmitted radiation from the abaxial side of the leaf
and guides it to a sensor PIN diode (S3590-01, Hamamatsu, Japan).
An FB 800-40 band-pass interference filter (ThorLabs) minimizes the
sensitivity to Chl fluorescence and non-modulated radiation. The PIN
diode is operated under a constant counter-voltage of 10 V minimizing
and stabilizing the internal capacitance of the diode. The photocurrent
is amplified by a feedback controlled current-to-voltage converter,
rectified, offset against 2 V, and the difference is further amplified.

2.7. Calculation of the redox state of P700

In these calculations the 810-nm signal was scaled to be 0 at
complete oxidation (saturation pulse) and 1.0 at complete reduction
(dark). The value of the 810-nm signal during pre-illumination was
defined s. From the condition of equilibrium [31,32]

P700 PC
P700° ~ X¢pCT @)

where the reduced fractions P700 and PC were assumed to generate the
positive optical signal. A quadratic equation describes the redox ratio
r = P700 / P700%:

. —B+ vVB?—4AC )
B 2A ’

where
o ke p .

A= S’Big+p+m S(1+kg); C = —skg, (5a3,b,c)

and & = 4, which is the ratio of extinction coefficients of P700 and PC
at 810 nm, p is the ratio of PC/P700 in leaves (typically 2) determined
from the oxidative titration of PSI donors by FRL [32,33] and kg = 30
is the P700/PC equilibrium constant [31,32]. The redox state of P700 is

P700 1 ]
P700 + P700° 147 (6)

and the number of donor side electrons, per PS], is

r D
ke

(7)

2.8. Membrane isolation, pigment-protein complexes purification and
pigment analysis

Stacked thylakoids were isolated from sunflower leaves as previously
described [34]. Membranes corresponding to 400 pg Chl were washed
with 5 mM EDTA and then dissolved in 800 pl of 0.7% o-DM, 10 mM
Hepes, pH 7.5. Dissolved samples were then fractionated by ultracentri-
fugation in a 0.1 to 1 M sucrose gradient containing 0.06% o.-DM and
10 mM Hepes, pH 7.5 (22 h at 280,000 g, 4 °C). Green bands corre-
sponding to monomeric Lhcb, trimeric LHCII, PSII core and PSI + LHCI
complexes [35] were harvested. Absorption spectra were obtained in
10 mM Hepes, pH 7.5, 0.06% o-DM, and 0.2 M sucrose; measurements
were performed using an SLM-Aminco DW-2000 spectrophotometer at
room temperature. Pigments were extracted from complexes with 85%
acetone buffered with Na;COs, and then the supernatant of each sample
was recovered after centrifugation (15 min at 13,000 g, 4 °C).

3. Results
3.1. General strategy

We seek to determine the intrinsic quantum yields (electrons
transported per photon absorbed by the particular photosystem), yy;
and y; of PSII and PSI, respectively, and likewise the excitation
partitioning coefficients aj and a; between PSII and PSI in leaves. To
achieve the goals, we apply recent advances in studies of the photosyn-
thetic electron transport in leaves—fast-response measurements of O,
evolution for PSII responses and precise 810 nm transmittance
measurements for PSI responses. The spectrum of the global quantum
yield of PSII, Yy (electrons transported per all quanta absorbed by
the leaf) was determined by measuring the O, evolution rate under
rate-limiting intensities of different wavelengths of monochromatic
light. The global yield of PSI, Y}, was determined by comparison of the re-
sponses of PSII (O, evolution) and PSI (the corresponding 810 nm
transmittance response) to low-intensity flash illumination. The intrin-
sic yields of PSI (y;) and PSII (yy, electrons transported per photon
absorbed by the photosystem) were determined by solving a system
of equations, based mainly on the fact that in far-red light the intrinsic
quantum yield of PSI, yj, is close to the global yield Y;, as most photons
are absorbed by PSI at these wavelengths (corrections were considered
by measurements at two wavelengths). The obtained very high yield
y; = 0.88 leads to a conclusion that a small amount of antenna Chl is
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needed to support the measured global yield Y;, while the larger part of
Chls are joined with PSIL Despite of it, the measured global yield Yj; was
still relatively low, revealing the intrinsic quantum yield of PSII,
yin = 0.63, which is significantly lower than the yield of charge separa-
tion of 0.89, detected from Chl fluorescence.

3.2. Action spectrum of PSII from O evolution

The global quantum yield of PSII oxygen evolution, Y, was measured
using weak monochromatic light. The leaf was pre-illuminated in far-
red light (FRL, 706 nm, 198 pmol m~2 s~ '), 200 ppm CO, and 2% O,
concentration in Ny. Under this illumination PC was completely oxi-
dized and P700 was only little reduced, as indicated by the 810 nm
transmittance signal. PQ was also oxidized due to the strong over-
excitation of PSI. For the measurement of quantum yield, first, the gas
was changed to 80 ppm O, and the 200 ppm CO, and after 2 min
the pre-illumination FRL was changed to a monochromatic light cut
from the spectrum of a white LED by interference filters. The intensity
of the light was chosen such that the rate of O, evolution did not
change much compared to that under FRL (intensities of 10 to
20 umol m~2 s~ ! dependent on wavelength). Fig. 1 shows a typical re-
sponse of the O, evolution rate to a transition from the pre-illumination
to the monochromatic measurement light. Oxygen evolution, initially
supported by PSII excitation due to the pre-illumination light, rapidly
changed dependent on the intensity of the monochromatic light
(adjusted such that O, evolution only slightly increased at the wave-
length of 462 nm in Fig. 1), stabilized for a second, and then linearly de-
clined in the light with the rate that differed depending on excitation
wavelength. It was checked that — with the baseline for O, measure-
ments recorded in the dark - the rate of O, evolution was proportionally
related to the intensity of the monochromatic light. Light-induced
changes in respiratory O, uptake were minimized due to the very low
background O, concentration, which strongly suppressed the respirato-
ry O, uptake [30], and due to the fast-response measurements, eliminat-
ing slow readjustments in respiratory metabolite pools. Therefore, the
global quantum yield Y;; was calculated as 4 times the initial (at 2.7 s,
Fig. 1) O, evolution rate under the monochromatic light, divided by

O, rate, ymol e m2 5™
Fluorescence, FIF,

Time, s

Fig. 1. Measurement of the global quantum yield of PSII, Y;. A sunflower leaf was pre-
illuminated under FRL, 706 nm, 198 umol m~2 s~ ! (incident) - 0.401 (absorptance),
200 ppm CO, and 2% O, concentration in N,, and transferred for 3 s to 462 nm
light, 24.3 - 0.909 umol m~2 s~ !, followed by darkness. The initial O, evolution
(5.8 umol e~ m~2 s, black line) was supported by PSII excitation by FRL; increase in
0, evolution at 2 s indicates the change in illumination from FRL to blue light. Chl fluores-
cence was recorded by PAM-101 fluorometer in parallel with the light quality transition
(red line) or the preillumination FRL was just turned off without the change to the
blue light (blue line). Notice the decrease in O, evolution (black dotted lines) and increase
in fluorescence under the blue light, caused by the accumulation of PQH,. Dotted line Fps;
indicates the level of PSI fluorescence.

the monochromatic PAD. The later linear decline was caused by the
accumulation of PQH; due to over-excitation of PSII at this wavelength,
as indicated by fluorescence rise (below). In terms of e~ per photon
absorbed in the leaf, the global PSII yield, Y}, was 0.42-0.43 in red and
green light, but decreased to about 0.30 in the blue spectral range
(Fig. 2). As anticipated, at wavelengths >680 nm the yield decreased
rapidly.

Chlorophyll fluorescence was slightly above F, during pre-
illumination, but decreased to the Fy level when pre-illumination was
turned off without the transition to the monochromatic light. When the
pre-illumination light was changed to monochromatic light, fluorescence
slowly and linearly increased in parallel with the decreasing O, evolution
rate. The quantum yield of PSII charge separation, (F, — F) / (Fn — Fpsp)
was 0.89 in the beginning of the monochromatic illumination, consider-
ing PSI fluoresce as indicated in the figure. The gradual decline in O,
evolution rate and increase in Chl fluorescence yield following the appli-
cation of the monochromatic light indicated over-excitation of PSII in
relation to PSI at this wavelength, leading to accumulation of PQH,.
The relative difference in O, evolution rate, [(initial rate — rate after
3 s) / initial rate], showed a complex action spectrum with maxima
in the blue and red (Fig. 3). This result indicated that the two photosys-
tems were not balanced indeed, but PSII was over-excited compared to
PSIin blue and red light. We further investigated the quantitative extent
of the misbalance in PSII and PSI excitation.

3.3. Optical flash-responses from PSI and PSII

Measurement of the global PSI yield, Y}, was more complicated than
that of Yy, since no gas exchange signal could be directly related to activ-
ity of this photosystem. Information about PSI performance was extract-
ed from the leaf transmittance change at 810 nm, which reports on
the reduction state of P700 and PC, the primary and secondary electron
donors to PSI.

In these experiments the leaf was pre-illuminated under combined
green plus far-red light (GL, 540 nm, 18 pmol m~2 s~ ! x 0.72 absorp-
tion, plus FRL, 706 nm, 40 pmol m~2 s~ ! x 0.62). Under these condi-
tions PQ at the PSII acceptor side and PC at the PSI donor side were
almost completely oxidized, but P700 was about half-reduced, being
in redox-equilibrium with PC [31]. The pre-illumination was terminated
and immediately followed by a weak monochromatic STF from the
filtered Xe source.

The flash-induced 810-nm signal changes were small compared to the
full amplitude of the 810-nm signal (Fig. 4). A correction for Fd™ signal,
15% of the oxidation jump, was considered for the complete oxidation
level, because Fd becomes reduced, decreasing the overall optical signal

0.8

0.7f
| —— Yield Yl
0.6f

—=— Yield YI

0.5F
0.4

0.3f

Global yields, Y, and Y,

0.2

0.1F

400 450 500 550 600 650 700 750
Wavelength, nm

Fig. 2. Spectra of the global quantum yields (with respect to quanta absorbed in the leaf) of
PSIL, Yy, obtained from the initial O, evolution rate after the change from FRL to different
monochromatic light, and of PSI, Y;, obtained from the flash-induced 810 nm transmit-
tance change calibrated at different wavelengths.
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Fig. 3. Relative decrease in O, evolution during the 3 s exposure (difference between the
black dotted lines, Fig. 1) after the change from FRL to light of different wavelengths.

as soon as the donor side carriers PC and P700 become oxidized. Under
the pre-illuminating GL + FRL light the steady-state equilibrium reduc-
tion of P700 was supported by linear electron flow from PSII excitation
[36] and by the “dark re-reduction” of inter-photosystem carriers [37],
which probably occurs via the same pathway as the fast, proton-
uncoupled component of cyclic electron transport around PSI [33,38].
These electron transport pathways continued operation for some time
in the dark after the background illumination was terminated, causing
post-illumination reduction of P700" and PC™", shown as the reference
line measured by darkening the leaf without the flash (Fig. 4). In the ex-
emplified recording a 650 nm weak STF was applied immediately after
the background light was turned off. The difference between the mea-
surement and reference traces represents the temporal response of the
810-nm signal to electron flow generated by the STF alone.

Fig. 5 illustrates the post-flash time course of this 810 nm difference
signal in detail, an average over a large number of measurements.
Clearly there is a delay of about 2 ms between the PSI flash-induced
oxidation of the P700—PC equilibrium pair and the following PSII-

9
—— Sat. pulse
° = Reference
O
o* 650 nm flash
€ Lo
c
o
©
'_
<
0 50 100 150 200

Time, ms

Fig. 4. Scaling of the 810-nm signal. The leaf was pre-illuminated with green light
(GL, 540 nm, 18 pmol m~2 s~ 1) plus far-red light (FRL, 706 nm, 40 pmol m~2 s~ '). In
this state a strong saturation pulse (7000 umol m~2 s~', 20 ms) was applied for deter-
mining signal levels corresponding to the complete oxidation (in the beginning of the
pulse, AT = 0) and complete reduction (AT = 7.6%. after the pulse) of PSI donor side
(dotted line at AT = 5.1%. indicates the conditional transition level from the oxidation
of P700 to the oxidation of PC). The AT = 0 level was corrected for the signal by Fd—,
assumed to be 15% of the P700 oxidation jump. For measurements, the background
GL + FRL was turned off and a weak STF (650 nm) was immediately applied. A reference
transient indicating PSI reduction by PSII during preillumination plus dark reduction by
equivalents from the PSI acceptor side was measured by terminating the illumination
without the flash.

induced reduction of these carriers, leaving sufficient time to separate
the 810 nm optical responses from PSI and PSII electrons. The initial
reduction state of P700 was between 0.4 and 0.5 in individual leaves,
corresponding to a very small fraction of reduced PC (as illustrated in
Fig. 4). As a result, the post-flash re-equilibration of the PC—P700 pair
was fast and invisible in our recording, so the arriving PSII electrons
were clearly distinguished from the PSI-induced oxidation of the
donor side carriers. The statistics of electron transfer from flash-
reduced PQ through Cyt bef to PC—P700 rather exactly followed the
Poisson (exponential) temporal kinetics with an average time constant
of about 12 ms (but somewhat different in individual leaves).

3.4. Per electron response of the 810 nm signal and PSI density

For an individual leaf the (flash-reference) difference signals are
shown in Fig. 6 for 650 and 713 nm wavelengths. The post-flash imme-
diate response towards oxidation is the principal measure of the quan-
tum yield of PSI at the flash wavelength, but for further analysis it had to
be converted from %. of the optical signal into electrons m™?2, in order
to be compared with the amount of absorbed photons m™~2. The full
amplitude of the exponential reducing phase was a good measure for
the calibration of the optical signal, proportional with the amount of
electrons generated by PSII during the flash (but overestimated by a
small portion of the flash-transferred electrons cycling back from the
acceptor side of PSI, see below).

Initially the PSI cycle was neglected and the 810-nm signal change
was calibrated based on the known quantity of PSII electrons generated
by the STF. The latter was calculated from the known amount of photons
in the STF, multiplying the flash photon dose (assuming 7% loss due to
double hits) by the global quantum yield of PSII (Fig. 2). This procedure
resulted in a variable per electron signal (for brevity we use this term in-
stead of umol e~ m~2) dependent on flash wavelength (Fig. 7), indicat-
ing an evident correlation between the 810-nm per electron signal and
leaf absorbance (apparent optical density). For an individual leaf the
scattering of data was small and we obtained a strong non-linearly
saturating dependence of the 810-nm per electron signal vs. leaf absor-
bance. The curve (Fig. 8) approached a saturating value at the absorbance
of 0.6, the minimum in the green spectral area, but the data point mea-
sured at 713 nm - the extreme low values of absorbance and of the PSII
yield - significantly jumped up from the smooth curve, indicating
that the number of electrons arriving at the PSI donor side was
underestimated. On this basis we assumed that not only PSII electrons
caused the exponentially rising signal, but a fraction of electrons trans-
ferred to the PSI acceptor side by the flash cycled back to the donor side
with temporal kinetics rather similar to those of the PSII electron transfer
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Fig. 5. Time-resolved response of the 810-nm transmittance signal to a low-intensity STF.
The flash causes immediate oxidation of PSI donors. After a delay of 2 ms the donor pool is
reduced by electrons arriving from PSII. Data points are the average of 200 recordings
fitted to an exponential function (black line).
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Fig. 6. Responses of PSI and PSII electron transport to a weak STF. The leaf was pre-
stabilized at GL + FRL as in Fig. 4, the pre-illumination light was turned off and a
650 nm STF was immediately applied. For reference, the same procedure was repeated
without the flash. The difference “flash-reference” shows the response of the 810-nm
signal, first oxidation due to PSI electron transport and then reduction due to PSIl — PSI
electron transport. Upper (red) curve, response to a 650 nm flash; lower (blue) curve,
response to a 713 nm flash. Cycling of 15% of the flash-transferred electrons back to the
donor side was determined as explained in Fig. 8 and the signal caused by these electrons
is indicated by the black dashed line.

through the Cyt bgf complex [38]. Inserting different values for the pro-
portion of cycling electrons, the smoothest curve over the whole spec-
trum was obtained on an assumption that 15% of electrons, transferred
to the PSI acceptor side by the flash, cycled back to the donor side at all
flash wavelengths (Fig. 8). The PSI cyclic flow had little influence on the
results at wavelengths, where PSII produced many electrons per flash,
but the influence was significant in far-red, where the contribution of
PSI cyclic electron flow was about equal to the contribution of PSII elec-
trons (Fig. 6).

The dependence of the 810 nm per electron signal on leaf optical
density is evidently based on inhomogeneous flash excitation across
the leaf interior. Blue and red photons were strongly absorbed in the
leaf layers close to the upper surface. 810 nm photons sensing the
oxidized P700 had a greater chance to escape from the leaf when the
oxidized PSI centers were concentrated at the leaf surface. In green
and far-red light the generated P700™ was rather equally distributed
across the leaf. As a result the strongly scattering 810 nm sensing
beam, having a lesser chance to escape from deeper sites in the leaf,
could visit every P700™" several times. During the measurement of the
maximum signal, P, all PSI centers were oxidized, thus, there was no
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Fig. 7. Spectral dependence of the 810-nm signal sensitivity, AT, in % per umol e~ m~2in
PSI donors. Typical leaf absorbance (optical density) is shown for comparison. Data from
four sunflower leaves are indicated by different colors.
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Fig. 8. Nonlinear correlation between the 810 nm signal sensitivity and leaf absorbance.
Empty data points were measured neglecting cycling of flash-transferred PSI electrons.
Then different cycling proportions were assumed (the same at all wavelengths), until
the smoothest curve was obtained assuming 15% of the flash-transferred electrons cycled
back to the donor side. Colors of data points approximate the color of the flash light.
Figures at vertical lines indicate wavelengths chosen for leaf preconditioning (706 and
541) and wavelengths used in Eqs. (12) and (13) (713 and 648).

gradient of P700™". Comparing the flash-oxidation signals with the Py,
deflection we considered the different intra-leaf gradient by applying
a normalization coefficient for the measured 810 nm deflection,
extending from 1.0 for green and far-red light to 1.5 for blue light, as
seen from the relative trend of the per electron signal in Fig. 8. Now,
by comparison of the normalized 810 nm flash signal with the total
810 nm Py, signal we converted the relative optical signal to the relative
number of electrons per PSI, involved in the flash oxidation-reduction
procedure (Eq. (7)). As an example, we revealed that for the 650 nm
flash, the amount of 0.199 umol e~ m™2 generated by PSIl was equiva-
lent to 0.186 electrons per PSI. This pair of figures allowed us to calculate
the density of PSI, which was 0.199/0.186 = 1.07 umol m~2. Thus,
knowing the absolute number of flash-generated electrons m~2 by
PSII on the one hand, and knowing the fraction of PSI these electrons
reduced on the other hand, we obtained the density of PSI centers.
Before the absorbance-dependent normalization of the 810 signal,
the so obtained PSI density was variable dependent on wavelength of
the flash, but remained constant after the signal was normalized to
the most uniform intra-leaf distribution of P700". Considering that in
this leaf the PSII density was 1.76 umol m™~2 (measured as 4 - O,
evolution generated by saturating STF), the PSII/PSI ratio was 1.76/
1.07 = 1.64.

3.5. Global quantum yield of PSI

For finding the global quantum yield of PSI, the relative number of
electrons transferred per PSI was first multiplied by PSI density,
umol m™~2, for finding the number of electrons transferred by PSI per
m~2 of leaf. Further, the quantum efficiency of PSI electron transport
was found by dividing the amount of transferred electrons by the dose
of photons in the flash, umol m~2. However, the so obtained figure
characterizes the efficiency of those PSI, which had P700 reduced
when the flash was applied. The global quantum yield of all PSI with
their P700 reduced was found by dividing the above fractional yield
by the fraction of PSI with reduced P700, calculated from Eq. (6) for
the pre-conditioning light. The so calculated global quantum yield of
PSI with reduced P700, Y}, is presented in Fig. 2 in comparison to the
global quantum yield of PSII

The result of Fig. 2 confirms the initial result of Fig. 3, indicating
significant over-excitation of PSII in some spectral intervals. The global
PSI yield, Yj, is generally lower than the PSII yield Yy, as shown in
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Fig. 9. Ratio of the quantum yields of PSII and PSI, Y;/Y,, for four sunflower (Helianthus
annuus) leaves grown in the laboratory and leaves collected from the yard of the laboratory
(Ulmus glabra, Betula pendula and 2 leaves of Aegopodium podagraria).

Fig. 9, which summarizes measurements for different leaves growing in-
and outdoors. Over wavelength ranges of 470 to 500 nm, 540 to
580 nm, and 640 to 650 nm the Y}/Y; ratio rises to 1.5-1.6. Only at
400 to 450 nm, and 510, 620 and 680 nm does the Y;;/Y; ratio approach
unity, drastically decreasing at wavelengths >680 nm and approaching
the limit of resolution at 710-720 nm. The results were practically iden-
tical for leaves grown in the growth chamber or outdoors, except
that the green maximum of PSII yield tended to be higher in U. glabra,
a very thick dark-green leaf.

We again emphasize that the yields in the ratio Yy/Y; are not the
quantum yields of electron transport of PSII and PSI with respect to pho-
tons exciting the corresponding antenna systems, but global yields that
were calculated with respect to all absorbed quanta. Therefore, the Y;/Y;
ratio encompasses the intrinsic quantum yields of the photosystems,
as well as the partitioning ratio of photons between the photosystems.
In the following analysis we shall resolve excitation partitioning
between, and intrinsic electron transport efficiency of, the individual
photosystems.

3.6. Intrinsic yield with respect to partitioned photons

For analysis of excitation partitioning between the photosystems we
proceeded from an evident relationship, valid for both photosystems,

Y=a-y, (8)

where Y is the measured global quantum yield with respect to total
absorbed light, a is excitation partitioning (capture) coefficient by the
particular photosystem and y is the intrinsic yield with respect to pho-
tons captured by this photosystem. To find the true intrinsic yields of
PSI and PSII we used an additional budget condition, considering that
in the red part of the spectrum only photosynthetically active pigments,
Chl a and Chl b absorb light:

Y, Yy
q+ay=—+-—=1, 9
Ty )

from which we obtain

Y"Y . (10)
1—-1L

Y1

Yu =

This relationship (Eq. (10)) is valid for any wavelength, provided
that the intrinsic quantum yields y; and y;; do not vary with excitation

wavelength and photosynthetically inactive pigments are absent. Defin-
ing the wavelengths as A\; and A,, we write

YIIM YII)\Z
=M M 11
Y Y Y (11)
Y1 Y1
yielding
Ying - Yoo —Ymo - Yiu
y = 12
! Yll)\l - le)\Z ( )
and
_ Yl)\l ) YII)\Z _YI)\Z ) Yll)\l
= Y=Y ' (13)

These expressions contain only measured global quantum yields
on the right side. One wavelength was chosen at 713 nm, where
Yy = 0.074 and Y; = 0.776 (Fig. 2). For better contrast the second
wavelength was chosen at 648 nm, where PSII activity was high
and the global yields were Y;; = 0.435 and Y; = 0.273. Substituting
these values into Eqgs. (12) and (13) we obtained the intrinsic yields
y; = 0.88 and y;; = 0.63.

3.7. Partitioning of excitation between PSII and PSI

The above determined intrinsic yields allowed us to calculate the
spectral excitation partitioning coefficients
Y

—— and ay(\ ,
Y1 uM Y

(14,15)

presented in Fig. 10. Characteristically, in the green and red spectral
range PSII received about 0.65-0.68 but PSI only 0.32-0.35 of absorbed
photons. A confirmation for our calculation routine came from the
fact that applying Eq. (9) for different wavelengths the sum a; + ay
remained constant with y; = 0.88 and y;; = 0.63 over the whole
amber-red spectral range, where carotenoids did not absorb light.

In the blue spectral range the sum ay + a; declined from unity,
showing that about 30% of light was screened by photosynthetically
inactive pigments, correspondingly reducing the availability of photons
for photosynthesis.

For comparison with the in vivo kinetic data, pigment-protein
complexes were isolated from a sunflower leaf and separated by sucrose
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Fig. 10. Excitation partitioning coefficients to PSI, ay, (red) and to PSI, aj, (blue) calculated
using the intrinsic quantum yields, y; = 0.63 and y; = 0.88 (curves with data points
indicated every 10 nm). Relative optical densities of PSII + LHCII and PSI + LHCI separated
in sucrose density gradient are presented as continuous curves. Black curve is the sum
ay + aj;; the two larger diamonds indicate data points used for calculation of y;; and y,
from Eqgs. (12) and (13).
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gradient ultracentrifugation as described in the Methods section.
The absolute absorbance of pigments bound with PSII was significantly
higher than the absorbance of pigments bound with PSI (Fig. 11).
The fractional absorbance of the PSII core plus total Lhcb (denoted
PSII + LHCII) was only a little higher than the functional in vivo excita-
tion partitioning coefficient to PSII, ay, at the red maximum of Chl
absorption (Fig. 10). The fractional absorbance of PSI pigments was
still rather significantly less than the calculated partitioning coefficient
a; in the red part of the spectrum. A distinct difference between the
absorbance of the pigment complexes and excitation partitioning to
photosystems was evident at the short-wave end of the spectrum.
At wavelengths <580 nm the functional excitation partitioning to both
PSII and PSI dropped by up to 30%, but this was not reflected in absor-
bance of the pigment complexes.

4. Discussion

In our hands the sum of the global quantum yields Y;; + Y; was
about 0.42 4 0.30 = 0.72 in the red part of the spectrum (Fig. 2),
equivalent to 0.125 - 0.72 = 0.090 O, per photon absorbed by the
leaf. This value is somewhat lower than 0.106, reported for net O, evo-
lution of 37 C5 species [39], but close to the yields of CO, uptake of 0.073
to 0.093 in C; plants under non-photorespiratory conditions [40-44].
We note that the measurements [39] were carried out with incandes-
cent illumination deprived of the far-red part by short-pass filters,
and measured with the LiCor quantum sensor. The latter has a very
sharp cutting edge exactly at 700 nm, but most short-pass filters leave
significant shoulder of transmittance from 700 to 720 nm, still active
in photosynthesis [45]. As a result, in these measurements the photo-
synthetically active PAD was underestimated in the near far-red region,
resulting in overestimated quantum yield (see also Fig. 12).

4.1. Charge recombination in PSII

Our kinetic analysis shows interesting spectral details, but generally
it confirms the significant over-excitation of PSII compared to PSI in
intact leaves, pre-illuminated with dominantly PSI light in our experi-
ments. This raises the question of how electron transport is balanced
for the two photosystems operating in series. Both photosystems
are linked by linear electron flow, J;, from H,0 to CO, and alternative ac-
ceptors (the latter being mainly N and O,, [46]). Consequently, J; must
be equal through both photosystems. In addition to the linear flow,
both photosystems may operate with losses, first, due to excitation
decay before charge separation, second, charge recombination (or elec-
tron cycling) after charge separation, such that their total excitation
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Fig. 11. Spectral absorbance of PSII core + LHCII (red line) and PSI core 4 LHCI (blue line),
separated in sucrose density gradient. Membranes corresponding to 400 pg of chlorophylls
were dissolved and separated by ultracentrifugation; green fractions were collected and
the optical density of each fraction was measured (presented on the ordinate axis as the op-
tical density per cm of spectrophotometer cuvette, recalculated assuming 1 ml of solvent).
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Fig. 12. Importance of near infrared light in photosynthesis. The photon density spectrum
of direct + diffuse sunlight was measured at midday (curve 1). Considering leaf absorp-
tance (curve 2) the spectrum of photon flux density absorbed by the leaf was found
(curve 3). The rate of PSII (curve 4) and PSI (curve 5) electron transport was calculated
for low monochromatic light intensities considering the global quantum yields Yy and Y;
(Fig. 2).

conversion rate is Jy = J. + Jcyand J; = Ji + Ja, where the subscripts
CII and CI indicate the decay/recombination/cycling rates in PSII and
PSL. In this conceptual framework we focus on the low-light conditions
used for the measurements of the quantum yield, where Jc involves
physiological pathways of cyclic electron transport (ms time domain),
recombination processes involving separated charges (pis time domain)
and the Fy fluorescence-emitting process of excitation decay before
charge separation (ps time domain), but no non-photochemical excita-
tion quenching (NPQ).

In absence of losses the total quantum yield of the 2-photosystem
mechanism could be Y;; = Y; = 0.5 e™ per photon absorbed, but in
our hands the yields were Y;; = 0.42 and Y; = 0.30 in the red light
(Fig. 2). Furthermore, our analysis succeeded in specifying that such a
low global yield was mainly caused by significant losses of excitation
energy in PSII, operating with an intrinsic efficiency y; = 0.63 with re-
spect to photons partitioned to this photosystem, while PSI operated
with a higher yield y; = 0.88. In our analysis y; and y;; were found
from a system of equations based on measurements at two wave-
lengths, one of which was chosen such where PSI activity dominated,
and the other such where PSII activity dominated. Then the excitation
partitioning coefficient a; was found such that it ensured the measured
global yield Y; and a;; was found such that it ensured the measured glob-
al yield Yy, Since the system of equations was derived on an assumption
that the sum a; + a; = 1, the latter condition was a priori fulfilled at
the two wavelengths chosen for determination of y; and yy;. Correctness
of the calculation method was confirmed by the fulfillment of the condi-
tion a; + a; = 1 at other wavelengths in the red part of the spectrum,
where carotenoids did not absorb light (Fig. 10).

Intrinsic yields of the photosystems are of central importance for
finding the excitation partitioning coefficients. The value of y; = 0.88
is in good agreement with the value of 0.96 + 0.11, determined
on PSI trimer complexes from Synechocystis 6803 using the pulsed
photoacoustic method [47]. In accordance with the high intrinsic
yield, a relatively low excitation partitioning coefficient q; satisfies the
measured global yield Y. Consequently, most Chl is connected with
PSII, in accordance with the PSII/PSI center density ratio of 1.64, obtain-
ed from our analysis.

It has been suggested that the excess of PSII centers over PSI centers
is justified by the inevitable photoinhibition of PSII, as a result of which
electron transport rates through both photosystems get balanced when
about a half of PSII are inactivated [50]. In our experiments leaves were
not exposed to high light intensities, eliminating the possibility of
photoinhibition, thus the investigated state was an uninhibited natural
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state of the photosynthetic machinery. At the low dominantly PSI light
the quantum yield of charge separation in PSII was 0.89, as detected
by the variable fluorescence F,/Fy, (considering Fps; in the total Fy), but
29% of separated charges did not yield in O, evolution, resulting in the
intrinsic yield of 0.63. The reason for the low yield, not accompanied
by high fluorescence, could be charge recombination from an acceptor
side carrier [51]. Such recombination did not occur from Qg since it
was not noticed in DCMU inhibited leaves [52], but rather charges
recombined from a reduced form of Qg [53]. This mechanism decreases
the efficiency of PSII electron transport, but has no influence on the F
and Fy, values reflecting charge separation, maintaining the F,/F, ratio
constant.

Our finding of a low PSll yield in steady state at low light is in conflict
with insignificant “misses” of excitation (<10%) for the advancement of
S-states [54]. Evidently, the low-yield state of PSII is not a principal
property of this photosystem, but is adjusted in intact leaves during
photosynthesis. The high yield of S-state advancement has been
shown not for single photons, but mainly for saturating STFs (multiple
repeated excitation during a few ps), and not in leaves, but in algae
and chloroplasts at low physiological temperatures and optimally
adjusted pH values. Misses increase with increasing temperature and
acidity of the medium. In our intact sunflower leaves during the slow
light-limited photosynthesis at 22 °C chloroplast stroma was acidified
by accumulating 3-phosphoglyceric acid [55,56]. Lumenal space sur-
rounding WOC was even more acidic in relation to the stroma due to
water-splitting plus proton transport through Cyt bgf—though probably
not much during the slow photosynthesis, but sufficiently to exceed the
threshold for ATP synthesis. As a result of lumen acidification the quan-
tum efficiency of S-state advancement could decrease. Because of this
TyrZ on the PSII donor side remained oxidized longer after each primary
charge separation, thereby facilitating radiationless charge recombina-
tion. In accordance with this model, the period-4 oscillations of flash-
induced O, evolution are damped rather rapidly in leaves, indicating a
high probability for “misses”; for example, in dark-adapted sunflower
leaves O, evolution was about equal from the 3" and the 4™ flashes
[57]. The hypothetical pH-based mechanism of regulation needs further
investigation, but our present and recent results clearly show that in
leaves during photosynthesis the actual quantum yield of PSII electron
transport is inhibited or down-regulated to be lower than indicated by
Chl fluorescence parameters.

4.2. Carotenoids screen blue light

A prominent feature of the action spectra of the photosystems
was the blue drop of about 30% at wavelengths <550-580 nm. Early
measurements of the photosynthetic action spectrum in the green
alga Chlorella exhibited a similar drop. This phenomenon was related
to screening by carotenoids absorbing blue light [20,58]. More informa-
tion about excitation transfer from Car to Chl was obtained from “sensi-
tized fluorescence” spectra, indicating a 40-50% excitation transfer
efficiency in green algae [59], no transfer from xanthophylls but 100%
from p-carotene [60] or that energy transfer from xanthophylls to Chl
a takes place at 100% transfer efficiency [61]. More recent detailed stud-
ies carried out on isolated trimers of LHCII from Arabidopsis thaliana
using femtosecond fluorescence upconversion method showed that
56% of absorbed energy is transferred from carotenoids to Chl via the
carotenoid S, state, and about 20% is transferred through the S state
[62,63].

In our pigment analysis, anthocyanins were not detected to be
present. Most carotenoids were bound in PSI and PSII complexes with
very little forming a band of free pigments. This means that a part
of the structural carotenoids of the photosynthetic pigment-protein
complexes do not transfer excitation to chlorophylls, and are thus not
“accessory pigments”. This result, obtained in intact leaves, is in line
with earlier reports [35,64] showing that each LHCII binds one Car
in an outer site, the so-called V1 (violaxanthin) binding site. This Car

is unable to transfer excitation to Chls, being used as a reserve of
violaxanthin for the synthesis of zeaxanthin in the xanthophyll cycle.
Thus, 3 Cars in LHCII have about 80% efficiency in Car — Chl a transfer,
1 Car has 0% efficiency, being purely a screening pigment. The screening
of 30% of blue light by photosynthetically inactive pigments is most
clearly indicated in Fig. 10, where the sum of the photosynthetically
active absorption cross-sections aj; + a; drops down to 0.7 between
450 and 500 nm. Thus, though the weakness of PSI in the blue spectral
range (absorption minimum of Chl a) could be partially compensated
for by excitation transfer from a part of carotenoids, the remaining
carotenoids just screen the blue light. Physiologically this may help to
avoid photoinhibition, which is particularly severe in blue light [65].

4.3. Spectrum of the quantum yields Yy/Y;

An important result of this work is the strongly conserved spectral
distribution of the ratio of PSII/PSI quantum yields among broadleaf
plant species (Fig. 9). If our optical measurements may seem unreliable,
then Fig. 3 directly confirms that PSII activity was closely balanced with
PSI activity only at wavelengths <450, 500-530 and 630 nm, but PSII
was overexcited at other wavelengths under our experimental condi-
tions. The red maximum of PSII excitation at 646 nm is followed by
the “red drop” at longer wavelengths. Other characteristic maxima in
PSII excitation are located at 470-490 and rather widely between
540-590 nm. The minima of PSII excitation are in the extreme blue of
397-446 nm, plus two narrow bands, one at 518 and the other at
629 nm. As a result of this spectral imbalance the Y;/Y; ratio oscillates
between 1.0 and 1.6 over the wavelength range from 400 to 680 nm.
Such a conserved spectral pattern of partitioning excitation between
PSII and PSI confirms that the antenna systems are under strong genetic
control, i.e., the number of the Lhcb and Lhca units per photosystem
core is rather constant, as are the relative abundances of the PSII and
PSI super-complexes, though absolute numbers per leaf area unit may
vary [66-69]. Moreover, the stoichiometry of PSII to PSI reaction centers
in leaf segments from spinach, cucumber and tobacco, all grown in
moderate light, was recently determined by two different approaches
(electrochromic signal and electron paramagnetic resonance) and
gave similar PSII/PSI ratio >1 [50]. All these results are consistent with
the constant Chl a/b ratio (around 3.2-3.5) measured in several plant
species upon growth in full sun [70]. Considering also the data in
Table 1 (Introduction), our results indicating a relatively large total
PSII antenna (absorption cross-section) in leaves are consistent with
the PSII/PSI ratio significantly exceeding unity - as obtained from our
analysis — and/or dominating PSII composition of C2S2M2L2 in our
leaves, as expected in State 1, where the loosely bound (L) LHCII trimer
is attached to PSII.

Contrary to the visible part of the spectrum, where PSII is dominat-
ing, PSI is strongly dominating in the far-red part of the spectrum
>690 nm. Fig. 12 illustrates the importance of far-red light for plant
growth, which successively compensates for the backlog of PSI activity
in the visible part of the natural sunlight. The more pronounced is the
necessity for additional incandescent (far-red) illumination under gas
discharge and luminescent lamps, usually poor of far-red.

In this work we pre-illuminated the leaves with PSI light, facilitating
the attachment of LHC to PSII (State 1, [25,26].). The movement of one
LHCII from PSII in State 1 to PSI in State 2 [71] would shift the points
of Yy/Y; vertically in Fig. 9, such that the maxima of over-excitation of
PSII would decrease and PSI would become over-excited with respect
to PSII at wavelengths where it is equally excited in State 1 [72]. It will
be the object of further research to show how much state transitions
can actually regulate the spectral Yy/Y; ratio in intact leaves.

4.4. Temporal kinetics of electron transport

Along with the quantum yields of both photosystems, these mea-
surements produced also novel information about the temporal kinetics
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of inter-photosystem electron transport in intact leaves. Using the 810-
nm signal we recorded the movement of electrons from PSII to PSI after
flash-excitation of the photosystems. During the initial 2 ms after the
flash virtually no electrons passed through the inter-photosystem
chain (Fig. 5). Subsequently, the number of electrons arriving at P700
increased mono-exponentially with a time constant of 12 ms at the
leaf temperature of 22 °C (Fig. 6). The mono-exponential process char-
acterizes the turnover of a single rate-limiting chemical reaction—most
likely the Q-cycle of the Cyt b¢f complex. It means that cytochromes b of
the Cyt bef complex were suitably pre-reduced during the precondition-
ing light, to ensure the transfer of both electrons from PQH, to the donor
side of PSI through the Q-cycle. Considering that our low-intensity
flashes caused the release of a single PQH, molecule from only 5% of
PSII, the recorded P700 reduction rate represented the diffusional and
Q-cycle processes involved in the processing of a single PQH, molecule.
With a single PQH, molecule as substrate the Q-cycle rate of (12 ms) ™!
was only about a half slower than the typical maximum rate of electron
transfer through Cyt bef with maximum PQH, concentration of about 6
PQH, per PSII [73,74]. Thus, the kinetics of PQH, oxidation by Cyt bef are
rather close to zero-order saturation at any realistic PQH, concentration,
beginning from 0.05 PQH, per PSII. Our result also shows that in intact
leaves the major rate-limiting step in inter-photosystem electron trans-
port is not diffusion of plastoquinol, but its oxidation in the Q-cycle.
Assuming that the initial sigmoidal part of the curve characterizes
the release of the PQH, molecule from PSII (1.6 ms, [29]), plus the diffu-
sional delay, we see that diffusion of PQ from PSII to Cyt bef is still much
faster (2 — 1.6 = 0.4 ms) than the Q-cycle (12 ms). The short <1 ms
diffusion time and exponentially increasing probability of the PQH,
oxidation reaction in time do not reveal significant heterogeneities in
inter-photosystem electron transport, e.g. such as percolation, resulting
in domains with significantly different PQ/PSII ratio and largely variable
diffusion time between the grana and stroma thylakoids [75-78].
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